About
Publications
Talks
Teaching
Projects
Contact
Publications
Type
Conference paper
Preprint
Date
2024
2023
2022
2021
2020
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Model selection in Gaussian processes scales prohibitively with the size of the training dataset, both in time and memory. While many …
Jonathan Wenger
,
Kaiwen Wu
,
Philipp Hennig
,
Jacob R. Gardner
,
Geoff Pleiss
,
John P. Cunningham
(2024).
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
. NeurIPS.
PDF
Cite
Code
arXiv
Computation-Aware Kalman Filtering and Smoothing
Kalman filtering and smoothing are the foundational mechanisms for efficient inference in Gauss-Markov models. However, their time and …
Marvin Pförtner
,
Jonathan Wenger
,
Jon Cockayne
,
Philipp Hennig
(2024).
Computation-Aware Kalman Filtering and Smoothing
. arXiv preprint.
PDF
Cite
Code
arXiv
Large-Scale Gaussian Processes via Alternating Projection
Gaussian process (GP) hyperparameter optimization requires repeatedly solving linear systems with n×n kernel matrices. To address the …
Kaiwen Wu
,
Jonathan Wenger
,
Haydn Jones
,
Geoff Pleiss
,
Jacob R. Gardner
(2024).
Large-Scale Gaussian Processes via Alternating Projection
. AISTATS.
PDF
Cite
arXiv
Accelerating Generalized Linear Models by Trading Off Computation for Uncertainty
Bayesian Generalized Linear Models (GLMs) define a flexible probabilistic framework to model categorical, ordinal and continuous data, …
Lukas Tatzel
,
Jonathan Wenger
,
Frank Schneider
,
Philipp Hennig
(2023).
Accelerating Generalized Linear Models by Trading Off Computation for Uncertainty
. arXiv preprint.
PDF
Cite
arXiv
On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective
The neural tangent kernel (NTK) has garnered significant attention as a theoretical framework for describing the behavior of …
Jonathan Wenger
,
Felix Dangel
,
Agustinus Kristiadi
(2023).
On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective
. arXiv preprint.
PDF
Cite
arXiv
Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers
Linear partial differential equations (PDEs) are an important, widely applied class of mechanistic models, describing physical …
Marvin Pförtner
,
Ingo Steinwart
,
Philipp Hennig
,
Jonathan Wenger
(2022).
Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers
. arXiv preprint.
PDF
Cite
Code
arXiv
Posterior and Computational Uncertainty in Gaussian Processes
Gaussian processes scale prohibitively with the size of the dataset. In response, many approximation methods have been developed, which …
Jonathan Wenger
,
Geoff Pleiss
,
Marvin Pförtner
,
Philipp Hennig
,
John P. Cunningham
(2022).
Posterior and Computational Uncertainty in Gaussian Processes
. NeurIPS.
PDF
Cite
Code
Video
arXiv
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Gaussian process hyperparameter optimization requires linear solves with, and log-determinants of, large kernel matrices. Iterative …
Jonathan Wenger
,
Geoff Pleiss
,
Philipp Hennig
,
John P. Cunningham
,
Jacob R. Gardner
(2022).
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
. ICML (oral, 2.1%).
PDF
Cite
Code
Poster
Slides
Video
arXiv
Proceedings
ProbNum: Probabilistic Numerics in Python
Probabilistic numerical methods (PNMs) solve numerical problems via probabilistic inference. They have been developed for linear …
Jonathan Wenger
,
Nicholas Krämer
,
Marvin Pförtner
,
Jonathan Schmidt
,
Nathanael Bosch
,
Nina Effenberger
,
Johannes Zenn
,
Alexandra Gessner
,
Toni Karvonen
,
François-Xavier Briol
,
Maren Mahsereci
,
Philipp Hennig
(2021).
ProbNum: Probabilistic Numerics in Python
. arXiv preprint.
PDF
Cite
Code
arXiv
Documentation
Probabilistic Linear Solvers for Machine Learning
Linear systems are the bedrock of virtually all numerical computation. Machine learning poses specific challenges for the solution of …
Jonathan Wenger
,
Philipp Hennig
(2020).
Probabilistic Linear Solvers for Machine Learning
. NeurIPS.
PDF
Cite
Code
Poster
Slides
Video
arXiv
Proceedings
Non-Parametric Calibration for Classification
Many applications of classification methods not only require high accuracy but also reliable estimation of predictive uncertainty. …
Jonathan Wenger
,
Hedvig Kjellström
,
Rudolph Triebel
(2020).
Non-Parametric Calibration for Classification
. AISTATS.
PDF
Cite
Code
Video
arXiv
Proceedings