# Non-Parametric Calibration for Classification

Jonathan Wenger TU München, KTH Royal Institute of Technology

July 5th, 2019



### Outline

Introduction

Uncertainty Representation

Calibration Methods

Gaussian Process Calibration

Experiments

Conclusion and Future Work



Jonathan Wenger TU München, KTH Royal Institute of Technology 2/24

### Knowing When We Don't



Figure 1: Segmented scenery of Tübingen from the cityscapes data set [1], illustrating a typical classification task in computer vision.



Jonathan Wenger TU München, KTH Royal Institute of Technology 3/ 24

### Research Question

How can **prediction uncertainty** of a multi-class classifier, applied to computer vision problems, be **accurately represented** independent of model specification?



Jonathan Wenger TU München, KTH Royal Institute of Technology 4/24

### Uncertainty Representation



#### **Definitions and Notation**

- $f_{X,Y}$  joint probability density of inputs and labels
- f classification model
- z = f(x) confidence score
- $\hat{y} = \arg \max_i(z_i)$  class prediction
- $\hat{z} = \max_i(z_i)$  confidence in prediction



### Misrepresentation of Uncertainty



Figure 2: Confidence histograms and reliability diagrams for a simple and a modern NN architecture [2].



Jonathan Wenger

TU München, KTH Royal Institute of Technology 6/24

### Calibration

#### Definition

A classifier is called **calibrated** [3, 4] if its confidence in its class prediction matches the probability of its prediction being correct, i.e.

 $\mathbb{E}\left[1_{\hat{y}=y} \mid \hat{z}\right] = \hat{z}.$ 

Let  $1 \le p < \infty$ , then  $ECE_p = \mathbb{E} \left[ |\hat{z} - \mathbb{E} [1_{\hat{y}=y} | \hat{z}] |^p \right]^{\frac{1}{p}}$ is called the **expected calibration error** [5].



### Active Learning

#### Idea

- Labelled samples are expensive to obtain
- Query most informative samples (e.g. uncertainty sampling [6])



Figure 3: Illustration of active learning [7].

Over- and underconfidence [8] relate to query quality:

 $o(f) = \mathbb{E}\left[\hat{z} \mid \hat{y} \neq y\right]$   $u(f) = \mathbb{E}\left[1 - \hat{z} \mid \hat{y} = y\right]$ 



### Relationship to calibration

#### Theorem

Let  $1 \le p < q \le \infty$ , then the following relationship between over-, underconfidence and the expected calibration error holds:

$$|o(f)\mathbb{P}(\hat{y} \neq y) - u(f)\mathbb{P}(\hat{y} = y)| \leq \mathsf{ECE}_p \leq \mathsf{ECE}_q.$$

#### Corollary

Assume f is calibrated and  $\mathbb{P}(\hat{y} \neq y) \notin \{0, 1\}$ , then

$$\frac{o(f)}{u(f)} = \frac{\mathbb{P}(\hat{y} = y)}{\mathbb{P}(\hat{y} \neq y)},$$

i.e. the **odds** of making a correct prediction determine the **ratio** between over- and underconfidence.



### Probability Calibration

Improve uncertainty representation **post-hoc** by using a subset of the training data for calibration.





### Existing Methods of Calibration

#### **Binary Methods**

- Platt Scaling [9, 10]
- Beta Calibration [11, 12]
- Isotonic Regression [13]
- Bayesian Binning into Quantiles (BBQ) [5]

#### **Multi-class Methods**

- One-vs-all [13]
- Temperature Scaling [2]

#### Limitations

- Binary methods not applicable for multi-class problems
- Temperature Scaling designed for NNs



### Gaussian Process Calibration

#### Requirements

- Multi-class classifiers
- Arbitrary classifiers  $\implies$  non-parametric
- Incorporation of **prior knowledge**  $\implies$  "don't fix what isn't broken"





Jonathan Wenger TU München, KTH Royal Institute of Technology 12/24

### Definition

- Latent function:  $g \sim \mathcal{GP}(\mu(\cdot), k(\cdot, \cdot \mid \theta))$
- Inverse link function:  $\sigma(g(z))_j = \frac{\exp(g(z_j))}{\sum_{k=1}^{K} \exp(g(z_k))}$
- Likelihood:  $Cat(y|\sigma(g(z)))$





## Inference and Prediction

#### Inference of Parameters

- adjusted scalable variational Gaussian Processes (SVGP) [14]
  - sparse representation  $p(\boldsymbol{u} \mid \boldsymbol{y})$  instead of  $p(\boldsymbol{g} \mid \boldsymbol{y})$  due to  $\mathcal{O}((NK)^3)$
  - approximate  $p(\boldsymbol{u} \mid \boldsymbol{y})$  by  $q(\boldsymbol{u}) \sim \mathcal{N}(m, S)$
- optimize all parameters jointly
  - variational parameters m, S
  - locations of inducing inputs
  - kernel parameters  $\theta$



#### Figure 4: Illustration of variational inference [15, 16].



Jonathan Wenger

TU München, KTH Royal Institute of Technology 14/24

### Inference and Prediction

#### Prediction of Confidence

Calibrated confidence for new input  $z_*$  via Monte-Carlo integration:

$$p(\mathbf{y}_* \mid \mathbf{y}) = \int p(\mathbf{y}_* \mid \mathbf{g}_*) \underbrace{p(\mathbf{g}_* \mid \mathbf{y})}_{pprox \int p(\mathbf{g}_* \mid \mathbf{y}) d\mathbf{g}_*} d\mathbf{g}_*$$





#### Experiments

#### Benchmark Data Sets

#### • MNIST [17]: Handwritten digit recognition

- 10 classes
- dimension 28×28
- train: 60000, calibration: 1000, test: 9000
- ImageNet 2012 [18]: Image database of natural objects and scenes
  - 1000 classes
  - varying dimension
  - train: 1.2 million, calibration: 1000, test: 9000





Jonathan Wenger TU München, KTH Royal Institute of Technology 16/24

#### Experiments

#### Classifiers

- Boosting: AdaBoost [19, 20], XGBoost [21]
- Forests: Mondrian Forest [22], Random Forest [23]
- Convolutional Neural Networks:
  - AlexNet [24]
  - VGG19 [25]
  - ResNet50, ResNet152 [26]
  - DenseNet121, DenseNet201 [27]
  - Inception v4 [28]
  - SE ResNeXt50, SE ResNeXt101[29, 30]





### Experiments: Results

Table 1: Average  $\mathsf{ECE}_1$  of ten Monte-Carlo cross validation folds on multi-class benchmark data sets.

|          |               |        |       | one-v    |       |       |       |         |
|----------|---------------|--------|-------|----------|-------|-------|-------|---------|
| Data Set | Model         | Uncal. | Platt | Isotonic | Beta  | BBQ   | Temp. | GPcalib |
| MNIST    | AdaBoost      | .6121  | .2267 | .1319    | .2222 | .1384 | .1567 | .0414   |
| MNIST    | XGBoost       | .0740  | .0449 | .0176    | .0184 | .0207 | .0222 | .0180   |
| MNIST    | Mondr. Forest | .2163  | .0357 | .0282    | .0383 | .0762 | .0208 | .0213   |
| MNIST    | Rand. Forest  | .1178  | .0273 | .0207    | .0259 | .1233 | .0121 | .0148   |
| MNIST    | 1 layer NN    | .0262  | .0126 | .0140    | .0168 | .0186 | .0195 | .0239   |
| ImageNet | AlexNet       | .0354  | .1143 | .2771    | .2321 | .1344 | .0336 | .0354   |
| ImageNet | VGG19         | .0375  | .1018 | .2656    | .2484 | .1642 | .0347 | .0351   |
| ImageNet | ResNet50      | .0444  | .0911 | .2632    | .2239 | .1627 | .0333 | .0333   |
| ImageNet | ResNet152     | .0525  | .0862 | .2374    | .2177 | .1665 | .0328 | .0336   |
| ImageNet | DenseNet121   | .0369  | .0941 | .2374    | .2277 | .1536 | .0333 | .0331   |
| ImageNet | DenseNet201   | .0421  | .0923 | .2306    | .2195 | .1602 | .0319 | .0336   |
| ImageNet | Inception v4  | .0311  | .0852 | .2795    | .1628 | .1569 | .0460 | .0307   |
| ImageNet | SE ResNeXt50  | .0432  | .0837 | .2570    | .1723 | .1717 | .0462 | .0311   |
| ImageNet | SE ResNeXt101 | .0571  | .0837 | .2718    | .1660 | .1513 | .0435 | .0317   |



#### Experiments: Results

Table 2: Average  $ECE_1$  and standard deviation of ten Monte-Carlo cross validation folds on multi-class benchmark data sets.

| Data Set | Model         | Uncal. | Temp.                      | GPcalib                    |
|----------|---------------|--------|----------------------------|----------------------------|
| MNIST    | AdaBoost      | .6121  | $.1567 \pm .0122$          | <b>.0414</b> ± .0085       |
| MNIST    | XGBoost       | .0740  | $.0222 \pm .0015$          | $.0180\pm.0014$            |
| MNIST    | Mondr. Forest | .2163  | <b>.0208</b> ± .0012       | $.0213 \pm .0020$          |
| MNIST    | Rand. Forest  | .1178  | $\textbf{.0121} \pm .0012$ | $.0148 \pm .0021$          |
| MNIST    | 1 layer NN    | .0262  | $.0195 \pm .0060$          | $.0239 \pm .0023$          |
| ImageNet | AlexNet       | .0354  | <b>.0336</b> ± .0038       | $.0354 \pm .0024$          |
| ImageNet | VGG19         | .0375  | <b>.0347</b> ± .0036       | $.0351 \pm .0042$          |
| ImageNet | ResNet50      | .0444  | $.0333 \pm .0032$          | <b>.0333</b> ± .0024       |
| ImageNet | ResNet152     | .0525  | $.0328 \pm .0030$          | $.0336 \pm .0032$          |
| ImageNet | DenseNet121   | .0369  | $.0333 \pm .0034$          | $\textbf{.0331} \pm .0038$ |
| ImageNet | DenseNet201   | .0421  | <b>.0319</b> ± .0029       | $.0336 \pm .0040$          |
| ImageNet | Inception v4  | .0311  | $.0460 \pm .0061$          | .0307 ± .0017              |
| ImageNet | SE ResNeXt50  | .0432  | $.0462 \pm .0028$          | <b>.0311</b> ± .0033       |
| ImageNet | SE ResNeXt101 | .0571  | $.0435 \pm .0061$          | $.0317 \pm .0031$          |



### Experiments: Active Learning

- KITTI [31, 32]: Stream-based urban traffic scenes
  - 8 classes
  - features [33] from segmented 3D point clouds
  - dimension 60



Figure 5: Example traffic scene showing the original image, ground truth bounding boxes, captured point clouds and a road overlay.



Jonathan Wenger

TU München, KTH Royal Institute of Technology 20/24

### Experiments: Active Learning

• KITTI [31, 32]: Stream-based urban traffic scenes



### Conclusion

#### Summary

- Accurate uncertainty representation is important
- Calibration, over- and underconfidence are linked
- GPcalib: multi-class calibration method for arbitrary classifiers

#### Future Work

- Theoretical framework for calibration [34]
  - Accuracy and uncertainty estimation
  - Calibration set size
- Extension of GP calibration
  - monotone latent process [35] ⇒ accuracy guarantee
  - online calibration [36]
- Calibration and active learning
  - Switching strategy training and calibration
  - "Active calibration"



### Preprint and Implementation

#### **Non-Parametric Calibration for Classification**

Jonathan Wenger Technical University of Munich (TUM) KTH Royal Institute of Technology j.wenger@tum.de Hedvig Kjellström KTH Royal Institute of Technology hedvig@kth.se

Rudolph Triebel Technical University of Munich (TUM) German Aerospace Center (DLR) triebel@in.tum.de

- Preprint [37]: https://arxiv.org/abs/1906.04933
- Code: https://github.com/JonathanWenger/pycalib



Jonathan Wenger

TU München, KTH Royal Institute of Technology 23/24

### Questions?







Jonathan Wenger j.wenger@tum.de

Dr. habil. Rudolph Triebel (TUM, DLR)

Prof. Dr. Hedvig Kjellström (KTH)

- Preprint [37]: https://arxiv.org/abs/1906.04933
- Code: https://github.com/JonathanWenger/pycalib



Jonathan Wenger

TU München, KTH Royal Institute of Technology 24/24

### References I

- Marius Cordts et al. "The Cityscapes Dataset for Semantic Urban Scene Understanding". In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
- [2] Chuan Guo et al. "On calibration of modern neural networks". In: *Proceedings of the* 34th International Conference on Machine Learning (ICML). 2017.
- [3] Allan H. Murphy. "A New Vector Partition of the Probability Score". In: Journal of Applied Meteorology (1962-1982) 12.4 (1973), pp. 595–600.
- [4] Morris H. DeGroot and Stephen E. Fienberg. "The Comparison and Evaluation of Forecasters". In: Journal of the Royal Statistical Society. Series D (The Statistician) 32.1/2 (1983), pp. 12–22.
- [5] Mahdi Pakdaman Naeini et al. "Obtaining Well Calibrated Probabilities Using Bayesian Binning". In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. Ed. by Blai Bonet and Sven Koenig. AAAI Press, 2015, pp. 2901–2907.
- [6] Burr Settles. Active learning literature survey. Tech. rep. 55-66. University of Wisconsin, Madison, 2010, p. 11.
- Stefan Hosein. Active Learning: Curious AI Algorithms. 2018. URL: https://www.datacamp.com/community/tutorials/active-learning (visited on 06/27/2019).
- [8] D. Mund et al. "Active online confidence boosting for efficient object classification". In: 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015, pp. 1367–1373.



### References II

- [9] John C. Platt. "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods". In: Advances in Large-Margin Classifiers. MIT Press, 1999, pp. 61–74.
- [10] Hsuan-Tien Lin et al. "A note on Platt's probabilistic outputs for support vector machines". In: *Machine learning* 68.3 (2007), pp. 267–276.
- [11] Meelis Kull et al. "Beyond sigmoids: How to obtain well-calibrated probabilities from binary classifiers with beta calibration". In: *Electronic Journal of Statistics* 11.2 (2017), pp. 5052–5080.
- [12] Meelis Kull et al. "Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers". In: *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*. Vol. 54. Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR, 2017, pp. 623–631.
- [13] Bianca Zadrozny and Charles Elkan. "Transforming Classifier Scores into Accurate Multiclass Probability Estimates". In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '02. Edmonton, Alberta, Canada: ACM, 2002, pp. 694–699.
- [14] James Hensman et al. "Scalable Variational Gaussian Process Classification". In: Proceedings of AISTATS. 2015.
- [15] Evan Jang. A Beginner's Guide to Variational Methods: Mean-Field Approximation. 2016. URL: https://blog.evjang.com/2016/08/variational-bayes.html (visited on 06/27/2019).



### References III

- [16] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
- [17] Yann LeCun et al. "Gradient-Based Learning Applied to Document Recognition". In: Proceedings of the IEEE. Vol. 86/11. 1998, pp. 2278–2324.
- [18] Olga Russakovsky et al. "ImageNet Large Scale Visual Recognition Challenge". In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252.
- [19] Yoav Freund and Robert E Schapire. "A decision-theoretic generalization of on-line learning and an application to boosting". In: *Journal of computer and system sciences* 55.1 (1997), pp. 119–139.
- [20] Trevor Hastie et al. "Multi-class adaboost". In: Statistics and its Interface 2.3 (2009), pp. 349–360.
- [21] Tianqi Chen and Carlos Guestrin. "XGBoost: A Scalable Tree Boosting System". In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '16. San Francisco, California, USA: ACM, 2016, pp. 785–794.
- [22] Balaji Lakshminarayanan et al. "Mondrian Forests: Efficient Online Random Forests". In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. NIPS'14. Montreal, Canada: MIT Press, 2014, pp. 3140–3148.
- [23] Leo Breiman. "Random Forests". In: Machine Learning 45.1 (2001), pp. 5-32.



### References IV

- [24] Alex Krizhevsky et al. "ImageNet Classification with Deep Convolutional Neural Networks". In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. NIPS'12. Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 1097–1105.
- [25] S. Liu and W. Deng. "Very deep convolutional neural network based image classification using small training sample size". In: 3rd IAPR Asian Conference on Pattern Recognition (ACPR). 2015, pp. 730–734.
- [26] Kaiming He et al. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.
- [27] Gao Huang et al. "Densely connected convolutional networks". In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.
- [28] Christian Szegedy et al. "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning". In: AAAI. 2016.
- [29] Saining Xie et al. "Aggregated Residual Transformations for Deep Neural Networks". In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 5987–5995.
- [30] Jie Hu et al. "Squeeze-and-Excitation Networks". In: IEEE Conference on Computer Vision and Pattern Recognition. 2018.
- [31] Andreas Geiger et al. "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite". In: Conference on Computer Vision and Pattern Recognition (CVPR). 2012.



### References V

- [32] Alexander Narr et al. "Stream-based active learning for efficient and adaptive classification of 3d objects". In: Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE. 2016, pp. 227–233.
- [33] Michael Himmelsbach et al. "Real-time object classification in 3D point clouds using point feature histograms". In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2009, pp. 994–1000.
- [34] Juozas Vaicenavicius et al. "Evaluating model calibration in classification". In: Proceedings of Machine Learning Research. Vol. 89. Proceedings of Machine Learning Research. PMLR, 2019, pp. 3459–3467.
- [35] Jaakko Riihimäki and Aki Vehtari. "Gaussian processes with monotonicity information". In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. 2010, pp. 645–652.
- [36] Thang D Bui et al. "Streaming sparse Gaussian process approximations". In: Advances in Neural Information Processing Systems. 2017, pp. 3299–3307.
- [37] Jonathan Wenger et al. "Non-Parametric Calibration for Classification". In: arXiv preprint arXiv:1906.04933 (2019). arXiv: 1906.04933. URL: https://github.com/JonathanWenger/pycalib.

