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In A Nutshell
Preconditioning can be exploited for highly efficient log-determinant estimation and in turn GP hyperparameter optimization.

Goal: Large-scale Gaussian process hyperparameter optimization.

Known: Can be reduced to matrix-vector multiplication. [1–7]

Problem: Stochastic trace estimates of log det(K̂) and its gradient.
D Require many random vectors to converge.
D Introduce stochasticity into optimization.

=⇒ slows down training

Our work: Precondition stochastic trace estimators.
D Preconditioning can be used to reduce variance – i.e. accelerate convergence.
D Theoretical guarantees for all approximations.
D Practical preconditioner choices for given kernels.
D Up to twelvefold training speedup.
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Large-scale GP Hyperparameter Optimization
A numerical linear algebra bottleneck.

Need to: Evaluate log-marginal likelihood and its derivative repeatedly.

Challenge: Computationally costly operations with the kernel matrix.
D linear solves v 7→ K̂−1v

D matrix traces log det(K̂) = tr(log(K̂)) and tr
(
K̂−1 ∂K̂

∂θi

) K̂ =

n×n

Linear solves and matrix traces can be computed solely via matrix-vector multiplication! [4, 5, 8]

This is great because . . .

D matrix-vector multiplies have complexityO(n2).

D structured or sparse matrices are efficient to multiply with.

D the kernel matrix does not need to be stored in memory explicitly [9].

D we can exploit parallelization and modern hardware (GPUs) [5].

lower time and space complexity
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Preconditioning
How to encode and leverage structural prior knowledge about matrices.

Preconditioner
P̂ ≈ K̂

such that κ(P̂−1K̂)� κ(K̂) and P̂ is computationally tractable.
D Computing and storing P̂ is cheap.
D Linear solves v 7→ P̂−1v are efficient.
D Derived properties, such as the determinant or spectrum are known.

Asymptotic approx. error g(`)→ 0 of sequence of preconditioners P̂ ` → K̂ :

κ(P̂−1` K̂) ≤ (1 +O(g(`))‖K̂‖F )2

Known Use: Accelerate and stabilize linear solves via CG⇒ bias reduction
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Stochastic Trace Estimation
Computing matrix traces tr(f(K̂)) via matrix-vector multiplication [4, 10, 11].
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Problems:
D Worst-case convergence in the number of random vectors isO(`− 1

2 )

D Introduces stochasticity into hyperparameter optimization
=⇒ slows down training
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Preconditioned Log-Determinant Estimation
Variance-reduced stochastic trace estimation via preconditioning.

Idea: Decompose log-determinant into deterministic and stochastic approximation.

log det(K̂) = log det
(
P̂ `P̂

−1
` K̂

)
= log det(P̂ `)︸ ︷︷ ︸

known

+tr(log(K̂)− log(P̂ `))︸ ︷︷ ︸
≈ stochastic trace estimate

The better the preconditioner, the smaller the stochastic approximation⇒ variance reduction

100 101 102 103 104

Number of random vectors `

lo
g
-d

et
er

m
in

an
t

log det(K̂) τSLQ
`,m (log K̂) log det(P̂) + τSLQ

`,m (log P̂−1K̂)

D Backward pass analogously via
automatic differentiation.

D If we compute a preconditioner for
CG, we can simply reuse it at
negligible overhead.

D If P̂ ` → K̂ at rate g(`), then the
STE only requiresO(`−

1
2 g(`))

random vectors.
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Convergence Rates for Kernel – Preconditioner Combinations
The faster the preconditioner converges to the kernel matrix (i.e. g(`) → 0) the fewer random vectors are needed.

If P̂ ` → K̂ at rate g(`), then the STE only requiresO(`− 1
2 g(`)) random vectors.

Kernel d Preconditioner g(`) Condition

any N none 1

· · · · · · · · · · · · · · ·
any N RFF `−

1
2 w/ high probability

RBF 1 partial Cholesky exp(−c`) for some c > 0

RBF N QFF exp(−b`
1
d ) for some b > 0 if `

1
d > 2γ−2

Matérn(ν) N partial Cholesky `−( 2ν
d

+1) 2ν ∈ N and maximin ordering
Matérn(ν) 1 QFF `−(s(ν)+1) where s(ν) ∈ N
mod. Matérn(ν) N QFF `−

s(ν)+1
d where s(ν) ∈ N

additive N any dg(`) all summands have rate g(`)
any N any kernel approx. g(`) ∃ uniform convergence bound
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Theoretical Guarantees
Probabilistic error bounds for the estimates of the log-marginal likelihood and its derivative.

Theorem (Log-marginal likelihood)
[. . . ] Then with probability 1− δ, the error in the
estimate η of the log-marginal likelihood L satisfies

|η − L| ≤ εCG+ 1
2
(εLanczos+εSTE)‖log(K̂)‖F ,

where the individual errors are bounded by

εCG(κ,m) ≤ K3

(√
κ−1√
κ+1

)m
(1)

εLanczos(κ,m) ≤ K1

(√
2κ+1−1√
2κ+1+1

)2m
(2)

εSTE(δ, `) ≤ C1

√
log(δ−1)`−

1
2 g(`) (3)

Theorem (Derivative)
[. . . ] Then with probability 1− δ, the error in the
estimate φ of the derivative of the log-marginal
likelihood ∂

∂θ
L satisfies∣∣φ− ∂

∂θ
L
∣∣ ≤ εCG+

1
2
(εCG′+εSTE)

∥∥K̂−1 ∂K̂
∂θ

∥∥
F

where the individual errors are bounded by

εCG(κ,m) ≤ K4

(√
κ−1√
κ+1

)m
(4)

εCG′(κ,m) ≤ K2

(√
κ−1√
κ+1

)m
(5)

εSTE(δ, `) ≤ C1

√
log(δ−1)`−

1
2 g(`) (6)

We leverage preconditioning not only to reduce bias, but crucially also to reduce variance.
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Preconditioning Reduces Bias and Variance
Estimating the log-marginal likelihood and its derivatives on synthetic data.
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Experiment Details:
D Randomly sampled synthetic data (n = 10,000, d = 1)
D RBF kernel with noise scale σ2 = 10−2

D Partial Cholesky preconditioner of size `
D ` random vectors
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Preconditioning Accelerates Hyperparameter Optimization
Gaussian process hyperparameter optimization on UCI data.
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(a) Training loss (Protein).
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(b) Line search computations (Protein).
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(c) Speedup on UCI datasets.

Experiment Details:
D UCI datasets (n = 12,449 to n = 326,155)
D Matérn( 3

2 ) kernel with noise scale σ2 = 10−2

D Partial Cholesky preconditioner of size 500
D ` = 50 random vectors

9



Summary

Preconditioning for Scalable Gaussian Process Hyperparameter
Optimization

Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John Cunningham and Jacob R. Gardner

D Preconditioning reduces variance – or equivalently accelerates convergence –
of the stochastic estimates of the log-determinant and its derivatives.

D Stronger theoretical guarantees for the computation of the log-determinant,
log-marginal likelihood and their derivatives.

D Specific convergence rates for combinations of kernels and preconditioners.

D Up to twelvefold speedup when training large-scale GP regression models.

Paper https://arxiv.org/abs/2107.00243

Implementation https://github.com/cornellius-gp/gpytorch
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