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Mechanistic Models
Describing the laws of nature mathematically.

Scientific computing relies on mechanistic models.

Example: Physical processes modeled by linear PDEs

I thermal conduction (heat equation)

I electromagnetism (Maxwell’s equations)

I wave mechanics (wave equation)
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Mechanistic Models
Describing the laws of nature mathematically.

Scientific computing relies on mechanistic models.

Strengths

I Interpretable / causal relationships

I Experimentally validated

Weaknesses

I Unknown parameters

I Computationally expensive
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Machine Learning Models
Learning to predict from data.

Machine learning relies on statistical models.

Example: Supervised Learning

I parametric models (linear regression)

I hierarchical models (neural networks)

I probabilistic models (Gaussian processes)
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Machine Learning Models
Learning to predict from data.

Machine learning relies on statistical models.

Strengths

I Learn relationships from unstructured data

I Representation of uncertainty→ decision-making

Weaknesses

I Lack of guarantees

I Unclear or implicit assumptions
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Combining Mechanistic and Statistical Models
…while retaining the benefits of both?

Modern science necessitates combining mechanistic and
statistical models.

Why?

I Experiments produce volumes of unstructured, multi-modal data

I Mechanistic model parameters are only approximately known

I Critical decisions under uncertainty are made using scientific models

Radmanesh et al. [2022]

Axen et al. [2022]

Sources of error / uncertainty: Limited computation and limited data.
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Probabilistic Numerics
Interpreting problems from numerical analysis as statistical inference. Hennig et al. [2015], Cockayne et al. [2019]

Core Insights

I The solution to any numerical problem is fundamentally uncertain.

I Numerical algorithms are learning agents, which actively collect data and make predictions.

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)
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Linear Partial Differential Equations
Mechanistic models for thermal conduction, electromagnetism, wave mechanics, …

We look for a function u : D → Rd′ which solves the equation

Dθ[u] = f

on an open and bounded domain D ⊂ Rd , whereDθ is a linear differential operator and f : D → R.

Typically, we require u ∈ U and f ∈ V for Banach spaces U, V.

Problems

I Usually no analytic solution⇒ numerical solvers necessary⇒ discretization error

I Parameters of the PDE (diffop parameters, right-hand side, etc.) are usually not known exactly
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Physics-Informed
Gaussian Process Regression
Case Study: The Heat Distribution in a CPU
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A Computer Scientist’s Linear PDE
The Heat Distribution in a CPU

Spatial Domain: DCPU = [0, lCPU]× [0,wCPU]× [0, dCPU] ⊂ R3

©ElooKoN, Wikimedia Commons, CC BY-SA 4.0 ©Ser Amantio di Nicolao, Wikimedia Commons, CC BY-SA 2.0

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 8

https://commons.wikimedia.org/wiki/File:Intel_i7_8700K.jpg
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:I5_6600K_IHS_and_CPU.jpg
https://creativecommons.org/licenses/by-sa/2.0


A Computer Scientist’s Linear PDE
The Heat Distribution in a CPU

Spatial Domain: DCPU,2D = [0, lCPU]× [0,wCPU] ⊂ R2
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A Computer Scientist’s Linear PDE
The Heat Distribution in a CPU

Spatial Domain: DCPU,1D = [0, lCPU] ⊂ R
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A Computer Scientist’s Linear PDE II
The Heat Distribution in a CPU Lienhard and Lienhard [2020]

Heat Equation

cpρ
∂u

∂t
− κ∆u = q̇V ,

where

I u : [0, T]× D → R temperature

I cp, ρ, κmaterial parameters

I q̇V : [0, T]× D → R heat source

Stationary Heat Equation

−κ∆u = q̇V

where

I u : D → R temperature

I κ thermal conductivity

I q̇V : D → R heat source

How can we phrase this as a learning problem?
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(Linear) PDEs are Indirect Observations of Their Solution
Conservation Laws and Information Operators

Classic Notion of an Observation

u(xi) = f(xi) ⇐⇒ δxi [u]− f(xi) = 0

I Observations are point evaluations.

I Interpret as applying evaluation functional.

Generalized “Observation”

−κ∆u = q̇V ⇐⇒ D[u]− f = 0

I Heat equation is a conservation law.

I A conservation law is an observation of the
behavior of the system u!

Idea: Relax notion of an observation to an information operator I[u] := D[u]− f = 0.
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GP Inference with PDE Observations
Probabilistic Symmetric RKHS Collocation Cockayne et al. [2017]

Prior
u ∼ GP (m, k)

Observations / Information Operators

IPDE[u] := −κ∆u(XPDE)− q̇V(XPDE) = 0

IDBC[u] := u(XBC)− u?(XBC) = 0
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GP Inference with PDE and Boundary Observations
Probabilistic Symmetric RKHS Collocation for the Dirichlet Problem Cockayne et al. [2017]

Prior
u ∼ GP (m, k)

Observations / Information Operators

IPDE[u] := −κ∆u(XPDE)− q̇V(XPDE) = 0

IDBC[u] := u(XBC)− u?(XBC) = 0

Posterior
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We have seen that GP inference can produce

I an approximate solution of the BVP, and

I an estimate of the approximation error.

Unfortunately,

I the boundary values are unknown in deployment, and

I the values of the heat source distribution are
uncertain.

u

IPDE[u, f] IBC[u, g]

f g
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Epistemic Parameter Uncertainty and Measured Data
Uncertain Right-Hand Side

Prior

u ∼ GP (mu, ku)

q̇V ∼ GP
(
mq̇V , kq̇V

)

q̇A ∼ GP
(
mq̇A , kq̇A

)
εDTS ∼ N (0,ΣDTS)

Information Operators

IPDE[u, q̇V ] = −κ∆u (XPDE)− q̇V(XPDE) = 0

INBC[u, q̇A] = −κ∂ν(XBC)u (XBC)− q̇A(XBC) = 0

IDTS[u, εDTS] = u(XDTS) + εDTS = yDTS

ISTAT[q̇V , q̇A] = dCPU

∫
D
q̇V dx −

∫
∂D

q̇A dS = 0
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Epistemic Parameter Uncertainty and Measured Data
Uncertain Neumann Boundary Conditions

Prior
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Epistemic Parameter Uncertainty and Measured Data
Noisy Sensor Data

Prior
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Epistemic Parameter Uncertainty and Measured Data
Thermal Stationarity
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The GP approach integrates enables seamless integration of

I prior knowledge about the solution,

I mechanistic knowledge in the form of linear PDEs with
uncertain right-hand sides,

I uncertain boundary conditions, and

I noisy empirical measurements,

all while providing

I quantification of approximation error,

I error propagation from uncertain system parameters, and

I a Bayesian solution to the inverse problem of estimating the
right-hand side and boundary function from data.

u

f

IPDE[u, f]

g

IBC[u, g]IMEAS[u]

All this is only possible because we give up on trying to identify a single unique solution in favor of a
probability measure over infinitely many solution candidates.
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2D Version of the CPU Simulation
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Example: Systems of Time-Dependent PDEs
The (Linearized) Shallow Water / Saint-Venant Equations Credit: Tim Weiland

0 5 10 15 20 25 30

x [m]

0.0

0.5

1.0

h
[m

]

h

0 5 10 15 20 25 30

x [m]

−0.4

−0.2

0.0

0.2

0.4

u

u

t = 0.00 sec

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 16



Physics-Informed Gaussian Process Regression
Generalizes Linear PDE Solvers

Marvin Pförtner, Ingo Steinwart, Philipp Hennig, Jonathan Wenger

I PDEs can be solved via GP inference⇒ structured uncertainty

I GPs provide a rigorous framework for probabilistic inference of

unknown functions from heterogeneous information sources

provided by affine information operators

I A vast class of classical PDE solvers (methods of weighted

residuals) can be recovered in the mean of a GP posterior

I Proof of GP inference theorem with bounded linear operator

observations in separable Banach path spaces

Paper � / 2212.12474

Code � / marvinpfoertner / linpde-gp

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 17

https://arxiv.org/abs/2212.12474
https://github.com/marvinpfoertner/linpde-gp


Generalized Gaussian Process Inference
A well-known conjecture...

Prior u ∼ GP (m, k) with paths in U ⊂ RD

Observations y = L[u] + ε, where

I L : U → Rn linear (e.g. Li = D[·](xi))
I ε ∼ N (0,Σ) with ε ⊥⊥ u

Predictive L[u] + ε ∼ N
(
L[m],LkL′ +Σ

)
, where

(LkL′)ij := Li[x 7→ Lj[k(x, ·)]]

Posterior u |L[u] + ε = y ∼ GP
(
mu|y, ku|y

)
, where

mu|y(x) := m(x) +L[k(·, x)]>
(
LkL′ +Σ

)†
(y −L[m])

ku|y(x1, x2) := k(x1, x2)−L[k(·, x1)]>
(
LkL′ +Σ

)† L[k(·, x2)]
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Connections to Classical Methods

MWR Information Operators
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MWR Information Operators
From Dirac to Galerkin [Pförtner et al., 2022, Section 3.3]

IPDE[u, f] = D[u](XPDE)− f(XPDE)

I U, V (separable) Banach spaces

I paths (u) ⊂ U and paths (f) ⊂ V (or
continuously embedded)

I D : U → V linear and bounded

I test functionals: `(1), . . . , `(n) ∈ V′

I trial projection: PÛ : U → U bounded

projection with ran(PÛ) = Û ⊂ U
I applicable to weak formulations

Example (Ritz-Galerkin Method)

I U = H1 (D), V = H1
0 (D)

I Dw[u](v) =
∫
D〈κ∇u,∇v〉 dx

I fw[v] = 〈f, v〉L2 , where f ∈ L2 (D)
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[u, fw] = `(i)
[
Dw

[
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[u, fw] = `(i)
[
Dw

[
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projection with ran(PÛ) = Û ⊂ U
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I fw[v] = 〈f, v〉L2 , where f ∈ L2 (D)
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I fw[v] = 〈f, v〉L2 , where f ∈ L2 (D)
I `(i) induced by test functions
ψ(i) ∈ V ↪→ V′′

I Û = span
(
φ(1), . . . , φ(n)

)
with trial

functions φ(i) = ψ(i)

I choose PÛ e.g. as L2 projection onto Û

PÛ[u] =

n∑
i=1

φ(i)
n∑

j=1

(P−1)ij〈φ(j), u〉L2 ,

where Pij = 〈φ(i), φ(j)〉L2
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Example: The Finite Element Method for the 1D Poisson Equation
A Ritz-Galerkin Method with Locally Supported Trial Functions

Test Functions: Linear Lagrange Elements
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u | BC,PDE

Matérn- 32 Prior Covariance⇒ paths (u) ⊂ H1 (D)
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Connections to Classical Methods
MWR Recovery Priors and Information Operators

MWR Recovery Prior
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Û + 2PÛkP
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′
Û
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Connections to Classical Methods
Weighted Residual Methods Through the Lens of GP Inference [Pförtner et al., 2022, Section 3.3]

I we show that all weighted residual methods [Fletcher, 1984] can be realized as posterior means
corresponding to an MWR recovery prior

I parametric and nonparametric collocation methods
I finite-volume methods
I pseudospectral methods
I (Petrov-)Galerkin methods

I finite-element methods
I spectral methods

I the remaining uncertainty lies in the kernel of the trial projection PÛ ⇒ probabilistic Galerkin
orthogonality

⇒ GP-based approaches as uncertainty-aware drop-in replacements for classical methods
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Theoretical Backbone

Gaussian Process Regression with Linear
Operator Observations
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Gaussian Process Regression with Linear Operator Observations I
Why all the fuss?

Definition (Gaussian Process)

A Gaussian process is a family of random variables {ω 7→ f(x, ω)}x∈X on a common Borel probability
space (Ω,B(Ω), P) such that every finite combination f(x1, ·), . . . , f(xn, ·) of the random variables
follows a multivariate normal distribution.

I for a generic GP, we can only reason about finitely many evaluations

I some of the observation operators we care about (partial derivatives and integrals) implicitly
operate on an infinite set of evaluations

I to apply existing results, we need ω 7→ (f(X, ω),L[f(·, ω)]) to be a Gaussian random variable, but
it is unclear if this is even measurable

I theoretical results should be easily applicable to GPs specified via their mean and covariance
functions (as opposed to projections of Gaussian measures in functions spaces)
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functions (as opposed to projections of Gaussian measures in functions spaces)
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Gaussian Process Regression with Linear Operator Observations II

Theorem (Pförtner et al. 2022, Theorem 1)

Let f ∼ GP (m, k) be a Gaussian process prior with index set X on the probability space (Ω,F , P),
whose paths lie in a real separable reproducing kernel Banach space (RKBS) B ⊂ RX such that
ω 7→ f(·, ω) is a B-valued Gaussian random variable. LetL : B → Rn be a bounded linear operator. Then

L[f] ∼ N
(
L[m],LkL′).

Let ε ∼ N (µ,Σ) be an Rn-valued Gaussian random vector with ε ⊥⊥ f. Then, for any y ∈ Rn,

f |L[f] + ε = y ∼ GP
(
mf|y, kf|y

)
,

with conditional mean and covariance function given by

mf|y(x) = m(x) +L[k(x, ·)]>
(
LkL′ +Σ

)†
(y − (L[m] + µ)) , and

kf|y(x1, x2) = k(x1, x2)−L[k(x1, ·)]>
(
LkL′ +Σ

)† L[k(·, x2)].

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 26



Gaussian Process Regression with Linear Operator Observations III
On Prior Selection [Pförtner et al., 2022, Sections B.2 and B.4]

I We show that the assumptions of the theorem are fulfilled for Gaussian processes with
I paths in any separable reproducing kernel Hilbert spaceH

⇒ B = H
⇒ Sobolev spaces [see Steinwart, 2019, Kanagawa et al., 2018]

I continuous paths on a compact domain⇒ B = C(D)
I continuously differentiable paths with bounded and uniformly continuous partial derivatives

⇒ B = Ck(D) or B = Cα(D)
⇒ Hölder spaces

I in these spaces, the most important observation operators (point evaluated partial derivatives and
integrals) are bounded

I path properties can be verified from properties of the covariance function [see e.g. Adler and
Taylor, 2007]

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 27



Gaussian Process Regression with Linear Operator Observations III
On Prior Selection [Pförtner et al., 2022, Sections B.2 and B.4]

I We show that the assumptions of the theorem are fulfilled for Gaussian processes with
I paths in any separable reproducing kernel Hilbert spaceH

⇒ B = H
⇒ Sobolev spaces [see Steinwart, 2019, Kanagawa et al., 2018]

I continuous paths on a compact domain⇒ B = C(D)

I continuously differentiable paths with bounded and uniformly continuous partial derivatives

⇒ B = Ck(D) or B = Cα(D)
⇒ Hölder spaces

I in these spaces, the most important observation operators (point evaluated partial derivatives and
integrals) are bounded

I path properties can be verified from properties of the covariance function [see e.g. Adler and
Taylor, 2007]

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 27



Gaussian Process Regression with Linear Operator Observations III
On Prior Selection [Pförtner et al., 2022, Sections B.2 and B.4]

I We show that the assumptions of the theorem are fulfilled for Gaussian processes with
I paths in any separable reproducing kernel Hilbert spaceH

⇒ B = H
⇒ Sobolev spaces [see Steinwart, 2019, Kanagawa et al., 2018]

I continuous paths on a compact domain⇒ B = C(D)
I continuously differentiable paths with bounded and uniformly continuous partial derivatives

⇒ B = Ck(D) or B = Cα(D)
⇒ Hölder spaces

I in these spaces, the most important observation operators (point evaluated partial derivatives and
integrals) are bounded

I path properties can be verified from properties of the covariance function [see e.g. Adler and
Taylor, 2007]

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 27



Gaussian Process Regression with Linear Operator Observations III
On Prior Selection [Pförtner et al., 2022, Sections B.2 and B.4]

I We show that the assumptions of the theorem are fulfilled for Gaussian processes with
I paths in any separable reproducing kernel Hilbert spaceH

⇒ B = H
⇒ Sobolev spaces [see Steinwart, 2019, Kanagawa et al., 2018]

I continuous paths on a compact domain⇒ B = C(D)
I continuously differentiable paths with bounded and uniformly continuous partial derivatives

⇒ B = Ck(D) or B = Cα(D)
⇒ Hölder spaces

I in these spaces, the most important observation operators (point evaluated partial derivatives and
integrals) are bounded

I path properties can be verified from properties of the covariance function [see e.g. Adler and
Taylor, 2007]

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 27



Gaussian Process Regression with Linear Operator Observations III
On Prior Selection [Pförtner et al., 2022, Sections B.2 and B.4]

I We show that the assumptions of the theorem are fulfilled for Gaussian processes with
I paths in any separable reproducing kernel Hilbert spaceH

⇒ B = H
⇒ Sobolev spaces [see Steinwart, 2019, Kanagawa et al., 2018]

I continuous paths on a compact domain⇒ B = C(D)
I continuously differentiable paths with bounded and uniformly continuous partial derivatives

⇒ B = Ck(D) or B = Cα(D)
⇒ Hölder spaces

I in these spaces, the most important observation operators (point evaluated partial derivatives and
integrals) are bounded

I path properties can be verified from properties of the covariance function [see e.g. Adler and
Taylor, 2007]

Probabilistic Numerics for Scientific Machine Learning — Jonathan Wenger — June 27, 2023 27



Gaussian Process Regression with Linear Operator Observations III
On Prior Selection: Examples [Pförtner et al., 2022, Sections B.2 and B.4]

I a GP whose covariance function is a tensor product of 1D Matérn-(pi +
1
2 ) kernels has paths in

B = C(p1,...,pd)(D) [Wang et al., 2021]

I a GP with Gaussian covariance function has smooth paths (i.e. B = Ck(D) for any k ≥ 0)

I a GP with Matérn-(p+ 1
2 ) covariance function has paths in an RKHS which is norm-equivalent to

the Sobolev space Hp (D) (under mild assumptions on the domain D, see Kanagawa et al. 2018)
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