Computation-Aware Gaussian Process Inference

Jonathan Wenger

Accurate Reconstruction

Accurate Reconstruction

Motivation

Accurate Reconstruction

(Radmanesh et al., 2022)

Subsampled Reconstruction (100x)

UNIVERSITAT TUBINGEN

Accurate Reconstruction

Learned Reconstruction (100x)

Importance of Uncertainty Quantification

Crucial information to benefit from the 100x acceleration is missing!

UNIVERSITAT

Accurate Reconstruction

Learned Reconstruction (100x)

Uncertainty quantification is essential to make critical decisions.

Gaussian Process Regression

Supervised learning of an unknown function $f : \mathbb{R}^d \to \mathbb{R}$ with uncertainty quantification.

earning an unknown function from data.

Goal: Supervised learning from n data points (X, y)

Prior: Gaussian process $f \sim \mathcal{GP}(\mu, k)$

Likelihood: Observations $\mathbf{y} = f(\mathbf{X}) + \boldsymbol{\varepsilon} \sim \mathcal{N}(f(\mathbf{X}), \sigma^2 \mathbf{I})$

Posterior:
$$f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$$
 with
 $\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))$
 $k_*(\cdot, \cdot) = k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)$
where $\hat{\mathbf{K}} = \mathbf{K} + \sigma^2 \mathbf{I} \in \mathbb{R}^{n \times n}$.

Computational Cost of Gaussian Processes

Uncertainty quantification can be expensive.

5

Computational Cost of Gaussian Processes

Uncertainty quantification can be expensive.

We need to approximate the posterior.

Approximate Gaussian Process Inference

Impact of approximations on uncertainty quantification and decision-making.

Approximate Gaussian Process Inference

Impact of approximations on uncertainty quantification and decision-making.

Approximations introduce error, which impacts downstream decisions.

Computation-Aware Gaussian Process Inference - Jonathan Wenger - July 19, 2023

Question 1:

How can we perform Gaussian process inference at scale?

Question 1:

How can we perform Gaussian process inference at scale?

Question 2:

How can we quantify the inevitable approximation error?

Q1: Gaussian Process Inference at Scale?

Efficiently approximating the posterior of a Gaussian process.

The posterior mean is a linear combination of kernel functions centered at datapoints.

$$f \mid \mathbf{X}, \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$$

$$\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))}_{\text{representer weights } \mathbf{v}_*} = \mu(\cdot) + \sum_{j=1}^n k(\cdot, \mathbf{x}_j)(\mathbf{v}_*)_j$$

 \mathbf{n}

Interlude: Method of Conjugate Gradients

Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system Ax = b, where A symmetric positive definite.

Idea: Rephrase as quadratic optimization problem and optimize. Let

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x}$$

then $\nabla f(\mathbf{x}) = \mathbf{0} \iff A\mathbf{x} = \mathbf{b} \iff r(\mathbf{x}) \coloneqq \mathbf{b} - A\mathbf{x} = \mathbf{0}$.

Question: How should we optimize?

Gradient descent: Follow $d_i = r(x_i) = -\nabla f(x_i)$ s.t. $\langle d_i, d_j \rangle = 0$.

2 Conjugate direction method: Follow d_i s. t. $\langle d_i^{\mathsf{T}} d_j \rangle_A = d_i^{\mathsf{T}} A d_j = 0$ for $i \neq j$. \Rightarrow convergence in at most *n* steps.

Conjugate gradient method: First step $d_0 = r(x_0)$.

Approximating Representer Weights

Iterative linear solvers can approximate the representer weights.

(Gardner et al., 2018; Charlier et al., 2021)

$$\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X}) \frac{\hat{\mathbf{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))}{r_{\text{encesenter weights } \mathbf{y}}} \approx \mu(\cdot) + k(\cdot, \mathbf{X}) \mathbf{v}_i$$

representer weights v_*

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights $v_* \approx v_i$.

Approximating Representer Weights

Iterative linear solvers can approximate the representer weights.

(Gardner et al., 2018; Charlier et al., 2021)

$$\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\mathbf{\hat{k}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))}_{\text{representer weights } \mathbf{v}_*} \approx \mu(\cdot) + k(\cdot, \mathbf{X}) \mathbf{v}_i$$

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights $v_* \approx v_i$.

Approx. GP Posterior Mean
 Data
 Kernel Function(s) × Approx. Representer Weight(s)

Benefit: Time complexity $\mathcal{O}(n^2)$ and space complexity $\mathcal{O}(nd)$.

Computation-Aware Gaussian Process Inference - Jonathan Wenger - July 19, 2023

Approximating Representer Weights

Iterative linear solvers can approximate the representer weights.

(Gardner et al., 2018; Charlier et al., 2021)

$$\mu_{*}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X}) \underbrace{\mathbf{\hat{K}}^{-1}(\mathbf{y} - \mu(\mathbf{X}))}_{\text{representer weights } \mathbf{v}_{*}} \approx \mu(\cdot) + k(\cdot, \mathbf{X}) \mathbf{v}_{i}$$

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights $v_* \approx v_i$.

Approx. GP Posterior Mean
 Data
 Kernel Function(s) × Approx. Representer Weight(s)

Question: Can we quantify the impact of this approximation on the posterior?

Computation-Aware Gaussian Process Inference - Jonathan Wenger - July 19, 2023

Q2: Can We Quantify Approximation Error?

Probabilistic error quantification at prediction time using probabilistic linear solvers.

Probabilistic Linear Solvers for Machine Learning

Leveraging structure and quantifying approximation error.

Problem: Solve linear system(s) $Ax_* = b$ for $x_* \in \mathbb{R}^n$.

Linear systems in ML are large-scale, have model-induced structure and are often solved repeatedly.

Interpreting solving linear systems numerically as statistical inference.

Core Insights of Probabilistic Numerics

> The solution to any numerical problem is fundamentally uncertain.

Interpreting solving linear systems numerically as statistical inference.

(Hennig, 2015; Cockayne et al., 2019; Wenger et al., 2020)

Core Insights of Probabilistic Numerics

- ► The solution to any numerical problem is fundamentally **uncertain**.
- Numerical algorithms are learning agents, which actively collect data and make predictions.

Estimating representer weights with a probabilistic linear solver.

(Wenger et al., 2022a)

Goal: Solve $\hat{K}v_* = y$ approximately.

 $\label{eq:Prior:V} \text{Prior:} \qquad \textit{v}_* \sim \mathcal{N}(\textit{v}_0, \pmb{\Sigma}_0)$

Estimating representer weights with a probabilistic linear solver.

(Wenger et al., 2022a)

Goal: Solve
$$\hat{K}v_* = y$$
 approximately.

Prior: $v_* \sim \mathcal{N}(v_0, \Sigma_0)$

Likelihood: Observe representer weights via arbitrarily chosen actions $s_i \in \mathbb{R}^n$:

$$\begin{aligned} \alpha_i &\coloneqq \mathbf{s}_i^\mathsf{T} \mathbf{r}_{i-1} = \mathbf{s}_i^\mathsf{T} ((\mathbf{y} - \boldsymbol{\mu}) - \hat{\mathbf{K}} \mathbf{v}_{i-1}) \\ &= \mathbf{s}_i^\mathsf{T} \hat{\mathbf{K}} (\mathbf{v}_* - \mathbf{v}_{i-1}) \end{aligned}$$

 $p(\alpha_i \mid \mathbf{v}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$

Estimating representer weights with a probabilistic linear solver.

(Wenger et al., 2022a)

Goal: Solve
$$\hat{K}v_* = y$$
 approximately.

Prior: $v_* \sim \mathcal{N}(v_0, \Sigma_0)$

Likelihood: Observe representer weights via arbitrarily chosen actions $s_i \in \mathbb{R}^n$:

$$\begin{aligned} \alpha_i &\coloneqq \mathbf{s}_i^{\mathsf{T}} \mathbf{r}_{i-1} = \mathbf{s}_i^{\mathsf{T}} ((\mathbf{y} - \boldsymbol{\mu}) - \hat{\mathbf{K}} \mathbf{v}_{i-1}) \\ &= \mathbf{s}_i^{\mathsf{T}} \hat{\mathbf{K}} (\mathbf{v}_* - \mathbf{v}_{i-1}) \end{aligned}$$

 $p(\alpha_i \mid \mathbf{v}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$

Posterior: Affine Gaussian inference!

Estimating representer weights with a probabilistic linear solver.

(Wenger et al., 2022a

Goal:Solve
$$\hat{K} \mathbf{v}_* = \mathbf{y}$$
 approximately.Prior: $\mathbf{v}_* \sim \mathcal{N}(\mathbf{v}_0, \mathbf{\Sigma}_0)$ Likelihood:Observe representer weights via arbitrarily chosen actions $\mathbf{s}_i \in \mathbb{R}^n$: $\alpha_i := \mathbf{s}_i^\mathsf{T} \mathbf{r}_{i-1} = \mathbf{s}_i^\mathsf{T} ((\mathbf{y} - \boldsymbol{\mu}) - \hat{K} \mathbf{v}_{i-1})$ $= \mathbf{s}_i^\mathsf{T} \hat{K} (\mathbf{v}_* - \mathbf{v}_{i-1})$ $p(\alpha_i \mid \mathbf{v}_*) = \lim_{\varepsilon \to 0} \mathcal{N}(\alpha_i; 0, \varepsilon)$ Posterior: $\mathbf{v}_* \mid \alpha_i \sim \mathcal{N}(\mathbf{v}_i, \mathbf{\Sigma}_i)$, where

$$\begin{split} \mathbf{v}_{i} &= \mathbf{v}_{i-1} + \mathbf{\Sigma}_{i-1} \hat{\mathbf{K}} \mathbf{s}_{i} (\mathbf{s}_{i}^{\mathsf{T}} \hat{\mathbf{K}} \mathbf{\Sigma}_{i-1} \hat{\mathbf{K}} \mathbf{s}_{i})^{-1} \mathbf{s}_{i}^{\mathsf{T}} \hat{\mathbf{K}} (\mathbf{v}_{*} - \mathbf{v}_{i-1}) \\ \mathbf{\Sigma}_{i} &= \mathbf{\Sigma}_{i-1} - \mathbf{\Sigma}_{i-1} \hat{\mathbf{K}} \mathbf{s}_{i} (\mathbf{s}_{i}^{\mathsf{T}} \hat{\mathbf{K}} \mathbf{\Sigma}_{i-1} \hat{\mathbf{K}} \mathbf{s}_{i})^{-1} \mathbf{s}_{i}^{\mathsf{T}} \hat{\mathbf{K}} \mathbf{\Sigma}_{i-1} \end{split}$$

Computation-Aware Gaussian Process Inference - Jonathan Wenger - July 19, 2023

The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

Remember:
$$\mathbf{y} = f(\mathbf{X}) + \boldsymbol{\varepsilon}$$
, where $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.
 $\Rightarrow \mathbf{y} - \boldsymbol{\mu} \sim \mathcal{N}(\mathbf{0}, \mathbf{k}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}) = \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}})$

The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

Remember:
$$\mathbf{y} = f(\mathbf{X}) + \boldsymbol{\varepsilon}$$
, where $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

$$\Rightarrow \mathbf{y} - \boldsymbol{\mu} \sim \mathcal{N}(\mathbf{0}, \mathbf{k}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}) = \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}})$$
$$\Rightarrow \mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}\left(\underbrace{\mathbf{0}}_{=\mathbf{v}_0}, \underbrace{\hat{\mathbf{K}}^{-1}}_{=\mathbf{\Sigma}_0}\right)$$

The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

$$\Rightarrow \mathbf{y} - \boldsymbol{\mu} \sim \mathcal{N}(\mathbf{0}, \mathbf{k}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}) = \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}})$$
$$\Rightarrow \mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}\left(\underbrace{\mathbf{0}}_{=\mathbf{v}_0}, \underbrace{\hat{\mathbf{K}}^{-1}}_{=\mathbf{\Sigma}_0}\right)$$

Setting $\mathbf{v}_0 = 0$ and $\mathbf{\Sigma}_0 = \hat{\mathbf{K}}^{-1}$, we have

$$\begin{aligned} \mathbf{v}_i &= \mathbf{S}_i (\mathbf{S}_i^\mathsf{T} \hat{\mathbf{K}} \mathbf{S}_i)^{-1} \mathbf{S}_i^\mathsf{T} (\mathbf{y} - \boldsymbol{\mu}) = \mathbf{C}_i (\mathbf{y} - \boldsymbol{\mu}) \\ \mathbf{\Sigma}_i &= \mathbf{\Sigma}_{i-1} - \mathbf{S}_i (\mathbf{S}_i^\mathsf{T} \hat{\mathbf{K}} \mathbf{S}_i)^{-1} \mathbf{S}_i^\mathsf{T} = \mathbf{\Sigma}_0 - \mathbf{C}_i \end{aligned}$$

where S_i is the matrix of actions s_1, \ldots, s_i .

The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

$$\Rightarrow \mathbf{y} - \boldsymbol{\mu} \sim \mathcal{N}(\mathbf{0}, \mathbf{k}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}) = \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}})$$
$$\Rightarrow \mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}\left(\underbrace{\mathbf{0}}_{=\mathbf{v}_0}, \underbrace{\hat{\mathbf{K}}^{-1}}_{=\mathbf{\Sigma}_0}\right)$$

Setting $\mathbf{v}_0 = 0$ and $\mathbf{\Sigma}_0 = \hat{\mathbf{K}}^{-1}$, we have

$$\begin{aligned} \mathbf{v}_i &= \mathbf{S}_i (\mathbf{S}_i^\mathsf{T} \hat{\mathbf{K}} \mathbf{S}_i)^{-1} \mathbf{S}_i^\mathsf{T} (\mathbf{y} - \boldsymbol{\mu}) = \mathbf{C}_i (\mathbf{y} - \boldsymbol{\mu}) \\ \mathbf{\Sigma}_i &= \mathbf{\Sigma}_{i-1} - \mathbf{S}_i (\mathbf{S}_i^\mathsf{T} \hat{\mathbf{K}} \mathbf{S}_i)^{-1} \mathbf{S}_i^\mathsf{T} = \mathbf{\Sigma}_0 - \mathbf{C}_i \end{aligned}$$

where S_i is the matrix of actions s_1, \ldots, s_i .

IterGP: Computation-Aware Gaussian Process Inference

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

(Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$, where

 $\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}), \quad \text{and} \quad k_*(\cdot, \cdot) = k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)$

IterGP: Computation-Aware Gaussian Process Inference

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

(Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$, where

$$\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}), \quad \text{and} \quad k_*(\cdot, \cdot) = k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)$$

Obtained: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

IterGP: Computation-Aware Gaussian Process Inference

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

(Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$, where

 $\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \mathbf{\mu}), \quad \text{and} \quad k_*(\cdot, \cdot) = k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)$

Obtained: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.
IterGP: Computation-Aware Gaussian Process Inference

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

(Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$, where

 $\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}), \quad \text{and} \quad k_*(\cdot, \cdot) = k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)$

Obtained: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: $(f \mid \mathbf{y})(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu})$

IterGP: Computation-Aware Gaussian Process Inference

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

(Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$, where

 $\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}), \quad \text{and} \quad k_*(\cdot, \cdot) = k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)$

Obtained: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: $(f \mid \mathbf{y})(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu})$

2 Reparametrize posterior: $(f \mid \mathbf{v}_*)(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_*$

IterGP: Computation-Aware Gaussian Process Inference

Quantifying uncertainty arising from observing finite data and performing a finite amount of computation.

(Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior $f \mid \mathbf{y} \sim \mathcal{GP}(\mu_*, k_*)$, where

 $\mu_*(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}), \quad \text{and} \quad k_*(\cdot, \cdot) = k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)$

Obtained: Belief about representer weights $\mathbf{v}_* = \hat{\mathbf{K}}^{-1}(\mathbf{y} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{v}_i, \boldsymbol{\Sigma}_i) = \mathcal{N}(\mathbf{v}_i, \hat{\mathbf{K}}^{-1} - \mathbf{C}_i)$

Idea: Propagate uncertainty about representer weights to posterior.

- Pathwise form of posterior: $(f \mid \mathbf{y})(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}(\mathbf{y} \boldsymbol{\mu})$
- **2** Reparametrize posterior: $(f | \mathbf{v}_*)(\cdot) \stackrel{d}{=} f(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_*$
- 3 Marginalize representer weights belief: $p(f(\cdot)) = \int p(f(\cdot) | \mathbf{v}_*) p(\mathbf{v}_*) d\mathbf{v}_* = \mathcal{GP}(f; \mu_i, k_i)$,

$$\mu_{i}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_{i}$$

$$k_{i}(\cdot, \cdot) = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)}_{\text{mathematical uncertainty}} + \underbrace{k(\cdot, \mathbf{X})\boldsymbol{\Sigma}_{i}k(\mathbf{X}, \cdot)}_{\text{computational uncertainty}} = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\mathbf{C}_{i}k(\mathbf{X}, \cdot)}_{\text{combined uncertainty}}$$

Probabilistic Quantification of Approximation Error

The covariance can be interpreted as a squared error.

Combined Uncertainty

Belief about the latent function is captured by $f \sim \mathcal{GP}(\mu_i, k_i)$, s.t.

$$\mu_{i}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_{i}$$

$$k_{i}(\cdot, \cdot) = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)}_{\text{mathematical uncertainty}} + \underbrace{k(\cdot, \mathbf{X})\boldsymbol{\Sigma}_{i}k(\mathbf{X}, \cdot)}_{\text{computational uncertainty}} = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\mathbf{C}_{i}k(\mathbf{X}, \cdot)}_{\text{combined uncertainty}}$$

Remember: $k(\mathbf{x}, \mathbf{x}) = \text{Cov}(f(\mathbf{x}), f(\mathbf{x})) = \mathbb{E}((f(\mathbf{x}) - \mathbb{E}(f(\mathbf{x})))^2)$

Probabilistic Quantification of Approximation Error

The covariance can be interpreted as a squared error.

Combined Uncertainty

Belief about the latent function is captured by $f \sim \mathcal{GP}(\mu_i, k_i)$, s.t.

$$\mu_{i}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_{i}$$

$$k_{i}(\cdot, \cdot) = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)}_{\text{mathematical uncertainty}} + \underbrace{k(\cdot, \mathbf{X})\boldsymbol{\Sigma}_{i}k(\mathbf{X}, \cdot)}_{\text{computational uncertainty}} = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\mathbf{C}_{i}k(\mathbf{X}, \cdot)}_{\text{combined uncertainty}}$$

Remember: $k(\mathbf{x}, \mathbf{x}) = \text{Cov}(f(\mathbf{x}), f(\mathbf{x})) = \mathbb{E}((f(\mathbf{x}) - \mathbb{E}(f(\mathbf{x})))^2)$

$$k_*(\mathbf{x}, \mathbf{x}) = \underbrace{k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, \mathbf{X})\hat{K}^{-1}k(\mathbf{X}, \mathbf{x})}_{\text{mathematical uncertainty}} = \mathbb{E}\left((f(\mathbf{x}) - \mu_*(\mathbf{x}))^2\right)$$

Probabilistic Quantification of Approximation Error

The covariance can be interpreted as a squared error.

Combined Uncertainty

Belief about the latent function is captured by $f \sim \mathcal{GP}(\mu_i, k_i)$, s.t.

$$\mu_{i}(\cdot) = \mu(\cdot) + k(\cdot, \mathbf{X})\mathbf{v}_{i}$$

$$k_{i}(\cdot, \cdot) = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \cdot)}_{\text{mathematical uncertainty}} + \underbrace{k(\cdot, \mathbf{X})\boldsymbol{\Sigma}_{i}k(\mathbf{X}, \cdot)}_{\text{computational uncertainty}} = \underbrace{k(\cdot, \cdot) - k(\cdot, \mathbf{X})\mathbf{C}_{i}k(\mathbf{X}, \cdot)}_{\text{combined uncertainty}}$$

Remember: $k(\mathbf{x}, \mathbf{x}) = \text{Cov}(f(\mathbf{x}), f(\mathbf{x})) = \mathbb{E}((f(\mathbf{x}) - \mathbb{E}(f(\mathbf{x})))^2)$

$$k_{*}(\mathbf{X}, \mathbf{X}) = \underbrace{k(\mathbf{X}, \mathbf{X}) - k(\mathbf{X}, \mathbf{X})\hat{\mathbf{K}}^{-1}k(\mathbf{X}, \mathbf{X})}_{\text{mathematical uncertainty}} = \mathbb{E}\left((f(\mathbf{X}) - \boldsymbol{\mu}_{*}(\mathbf{X}))^{2}\right)$$

$$k_{i}^{\text{comp}}(\mathbf{X}, \mathbf{X}) = \underbrace{k(\mathbf{X}, \mathbf{X})\boldsymbol{\Sigma}_{i}k(\mathbf{X}, \mathbf{X})}_{\text{computational uncertainty}} = \underbrace{\Sigma_{i}=\text{Cov}(\mathbf{v}_{*})=\mathbb{E}((\mathbf{v}_{*}-\mathbf{v}_{i})(\mathbf{v}_{*}-\mathbf{v}_{i})^{\intercal})}_{\mathbb{E}} \mathbb{E}\left((\boldsymbol{\mu}_{*}(\mathbf{X}) - \boldsymbol{\mu}_{i}(\mathbf{X}))^{2}\right)$$

Interpreting computational and combined uncertainty as error quantification.

Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

Interpreting computational and combined uncertainty as error quantification.

lterGP-PI

Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

Theoretical Analysis

Uncertainty as a bound on the relative predictive error.

Theorem (Relative Error Bound)

$$\sup_{g \in \mathcal{H}_{k^{\sigma}} : \|g\|_{\mathcal{H}_{k^{\sigma}}} \leq 1} \underbrace{g(\mathbf{x}) - \mu_*^g(\mathbf{x})}_{\text{error of math. post. mean } \odot} \sup_{g \in \mathcal{H}_{k^{\sigma}}} \frac{|g(\mathbf{x}) - \mu_*^g(\mathbf{x})|}{\|g\|_{\mathcal{H}_{k^{\sigma}}}} = \sqrt{k_*(\mathbf{x}, \mathbf{x}) + \sigma^2} \tag{1}$$

Theoretical Analysis

The combined uncertainty is a tight worst case bound on the relative error to the latent function

(Wenger et al., 2022a)

Theorem (Relative Error Bound) error of approximate posterior mean -+ $\sup_{g \in \mathcal{H}_{k^{\sigma}} : \|g\|_{\mathcal{H}_{k^{\sigma}}} \leq 1} \underbrace{g(\mathbf{X}) - \mu_{*}^{g}(\mathbf{X})}_{\text{error of math. post. mean } \bullet} + \underbrace{\mu_{*}^{g}(\mathbf{X}) - \mu_{i}^{g}(\mathbf{X})}_{\text{computational error } \bullet} = \sqrt{k_{i}(\mathbf{X}, \mathbf{X}) + \sigma^{2}}$ (1 Variance Latent Function Mathematical Posterior Mean Mathematical Uncertainty Data Approximate Posterior Mean Computational Uncertainty

Computation-Aware Gaussian Process Inference - Jonathan Wenger - July 19, 2023

Combined Uncertainty

► Gaussian process inference is prohibitive for large datasets.

- ► Gaussian process inference is prohibitive for large datasets.
- ► Iterative methods can reduce the necessary computations from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$.

- ► Gaussian process inference is prohibitive for large datasets.
- ► Iterative methods can reduce the necessary computations from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$.
- Using probabilistic numerics we can quantify the error when approximating Gaussian processes.

- ► Gaussian process inference is prohibitive for large datasets.
- ► Iterative methods can reduce the necessary computations from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$.
- ▶ Using probabilistic numerics we can quantify the error when approximating Gaussian processes.
- Explicit trade-off between computation and uncertainty.

- Gaussian process inference is prohibitive for large datasets.
- ▶ Iterative methods can reduce the necessary computations from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$.
- Using probabilistic numerics we can quantify the error when approximating Gaussian processes.
- Explicit trade-off between computation and uncertainty.

What About:

How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?

- Gaussian process inference is prohibitive for large datasets.
- ▶ Iterative methods can reduce the necessary computations from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2)$.
- Using probabilistic numerics we can quantify the error when approximating Gaussian processes.
- Explicit trade-off between computation and uncertainty.

What About:

- ► How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?
- ► Is quadratic time $O(n^2)$ the limit? Can we approximate more cheaply?

IterGP with unit vector actions recovers vanilla GP inference.

IterGP with unit vector actions recovers vanilla GP inference.

IterGP-Cholesky

IterGP with unit vector actions recovers vanilla GP inference.

IterGP-Cholesky

IterGP with unit vector actions recovers vanilla GP inference.

IterGP-Cholesky

Computation-Aware Gaussian Process Inference - Jonathan Wenger - July 19, 2023

IterGP with unit vector actions recovers vanilla GP inference.

UNIVERSITAT

IterGP-Cholesky

Policy Choice and Connection to Other Approximations

IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Method	Actions s i	Classic Analog
IterGP-Cholesky IterGP-EVD IterGP-CG IterGP-PseudoInput	$\begin{array}{c} \mathbf{e}_i \\ \mathrm{ev}_i(\hat{\mathbf{K}}) \\ \mathbf{s}_i^{\mathrm{PCG}} \text{ or } \hat{\mathbf{P}}^{-1} \mathbf{r}_i \\ k(\mathbf{X}, \mathbf{z}_i) \end{array}$	(Partial) Cholesky / subset of data (Partial) Eigenvalue decomposition (Preconditioned) CG ≈ SVGP

CGGP versus IterGP-CG

IterGP reduces the necessary computations for CG-based GP inference.

CGGP versus IterGP-CG

IterGP reduces the necessary computations for CG-based GP inference.

Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).

SVGP versus IterGP-PI

Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).

UNIVERSI

TUBINGEN

SVGP versus IterGP-PI

Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).

What about optimizing inducing point locations?

UNIVERSITA TUBINGEN

SVGP versus IterGP-PI

Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).

What about **computational cost**? SVGP: $\mathcal{O}(nm^2)$ versus IterGP-PI: $\mathcal{O}(n^2m)$.

UNIVERSITA TÜBINGEN Linear-time computation-aware GP inference with IterGP.

Policy: Unit vector actions $s_i = e_j$ which select points greedily as $j = \arg \max r_{i-1} \implies O(nm^2)$.

SVGP versus IterGP-MAR: Large-Scale Problem

Linear-time computation-aware GP inference with IterGP on a problem with $n \approx 10^5$ datapoints.

Policy: Unit vector actions $\mathbf{s}_i = \mathbf{e}_i$ which select points greedily as $j = \arg \max \mathbf{r}_{i-1} \implies \mathcal{O}(nm^2)$.

SVGP versus IterGP-MAR: Large-Scale Problem

Linear-time computation-aware GP inference with IterGP on a problem with $n \approx 10^5$ datapoints.

Policy: Unit vector actions $\mathbf{s}_i = \mathbf{e}_j$ which select points greedily as $j = \arg \max r_{i-1} \implies \mathcal{O}(nm^2)$.

Scalable GP approximation without inadvertently comprimising uncertainty quantification.

Bonus: Getting Philosophical

Blurring the lines between data and computation.

Working with Infinite Data

For IterGP it does not matter how large the dataset is, or whether we have it stored on our machine.

Theorem (Online GP Approximation with IterGP)

Let $n, n' \in \mathbb{N}$ and consider training data sets $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^{n}$ and $X' \in \mathbb{R}^{n' \times d}$, $y' \in \mathbb{R}^{n'}$. Consider two sequences of actions $(\mathbf{s}_{i})_{i=1}^{n} \in \mathbb{R}^{n}$ and $(\tilde{\mathbf{s}}_{i})_{i=1}^{n+n'} \in \mathbb{R}^{n+n'}$ such that

$$ilde{\mathbf{s}}_i = egin{pmatrix} \mathbf{s}_i \ \mathbf{0} \end{pmatrix}$$

(2)

Then the posterior returned by IterGP for the dataset (X, y) using actions s_i is identical to the posterior returned by IterGP for the extended dataset using actions \tilde{s}_i :

ITERGP
$$(\mu, k, \mathbf{X}, \mathbf{y}, (\mathbf{s}_i)_i) = I$$
TERGP $\left(\mu, k, \begin{pmatrix} \mathbf{X} \\ \mathbf{X}' \end{pmatrix}, \begin{pmatrix} \mathbf{y} \\ \mathbf{y}' \end{pmatrix}, (\tilde{\mathbf{s}}_i)_i \right).$

UNIVERSITAT

An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes from this perspective.

An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

 $\begin{aligned} & f \sim \mathcal{GP}(\mu, k) \\ & \tilde{\mathbf{y}} \mid f(\mathbf{X}) \sim \mathcal{N}\big(\mathbf{S}_i^\mathsf{T} f(\mathbf{X}), \sigma^2 \mathbf{S}_i^\mathsf{T} \mathbf{S}_i\big) \\ & f \mid \mathbf{X}, \tilde{\mathbf{y}} \sim \mathcal{GP}(\mu_i, k_i) \end{aligned}$

An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

 $\begin{aligned} & f \sim \mathcal{GP}(\mu, k) \\ & \tilde{\mathbf{y}} \mid f(\mathbf{X}) \sim \mathcal{N}\left(\mathbf{S}_{i}^{\mathsf{T}} f(\mathbf{X}), \sigma^{2} \mathbf{S}_{i}^{\mathsf{T}} \mathbf{S}_{i}\right) \\ & f \mid \mathbf{X}, \tilde{\mathbf{y}} \sim \mathcal{GP}(\mu_{i}, k_{i}) \end{aligned}$

IterGP's combined posterior is equivalent to exact GP regression for linearly projected data.

Takeaways

► Large-scale models are often as much about the approximation as they are about the data.

Takeaways

- Large-scale models are often as much about the approximation as they are about the data.
- Uncertainty arises from limited data and from limited computation.

Takeaways

- Large-scale models are often as much about the approximation as they are about the data.
- Uncertainty arises from limited data and from limited computation.
- \blacktriangleright For GPs, we can exactly quantify the approximation error given arbitrary resources \implies IterGP.

Takeaways

- Large-scale models are often as much about the approximation as they are about the data.
- ► Uncertainty arises from limited data and from limited computation.
- \blacktriangleright For GPs, we can exactly quantify the approximation error given arbitrary resources \implies IterGP.
- Explicit trade-off between computation and uncertainty.

Takeaways

- Large-scale models are often as much about the approximation as they are about the data.
- Uncertainty arises from limited data and from limited computation.
- \blacktriangleright For GPs, we can exactly quantify the approximation error given arbitrary resources \implies IterGP.
- Explicit trade-off between computation and uncertainty.

Open Questions

► Model selection / hyperparameter optimization?

Takeaways

- Large-scale models are often as much about the approximation as they are about the data.
- Uncertainty arises from limited data and from limited computation.
- ► For GPs, we can exactly quantify the approximation error given arbitrary resources ⇒ IterGP.
- Explicit trade-off between computation and uncertainty.,

Open Questions

- Model selection / hyperparameter optimization?
- Policy design for downstream tasks and decision making problems.
 - Active learning
 - Bayesian optimization
 - ► .

Takeaways

- Large-scale models are often as much about the approximation as they are about the data.
- Uncertainty arises from limited data and from limited computation.
- ► For GPs, we can exactly quantify the approximation error given arbitrary resources ⇒ IterGP.
- Explicit trade-off between computation and uncertainty.

Open Questions

- Model selection / hyperparameter optimization?
- Policy design for downstream tasks and decision making problems.
 - Active learning
 - Bayesian optimization
 - ► .

Extension to non-Gaussian likelihoods.

Comparison of GP Approximations

Gaussian Process Classification

Large-scale Model Selection

Comparison of GP Approximations: Wasserstein-2 Distance

Comparison of different GP approximations at the training data, for interpolation and extrapolation.

füßingen

Comparison of GP Approximations: KL-Divergence

Comparison of different GP approximations at the training data, for interpolation and extrapolation.

INIVERSITA Tubingen

Gaussian Process Classification

Extension to non-Gaussian likelihoods via Laplace Approximation.

 x_2

TUBINGE

Gaussian Process Classification

Extension to non-Gaussian likelihoods via Laplace Approximation.

Model Selection for Gaussian Processes

We can identify kernel hyperparameters by optimizing the log-marginal likelihood.

35

Large-scale GP Hyperparameter Optimization

A numerical linear algebra bottleneck.

Need to: Evaluate log-marginal likelihood and its derivative repeatedly.

- ► log-marginal likelihood $\mathcal{L}(\boldsymbol{\theta}) = -\frac{1}{2} \left(\boldsymbol{y}^{\mathsf{T}} \hat{\boldsymbol{K}}^{-1} \boldsymbol{y} + \log \det(\hat{\boldsymbol{K}}) + n \log(2\pi) \right)$
- $\blacktriangleright \quad \text{derivative } \tfrac{\partial}{\partial \theta} \mathcal{L}(\theta) = \tfrac{1}{2} y^{\mathsf{T}} \hat{K}^{-1} \tfrac{\partial \hat{K}}{\partial \theta} \hat{K}^{-1} y \tfrac{1}{2} \operatorname{tr}(\hat{K}^{-1} \tfrac{\partial \hat{K}}{\partial \theta})$

Challenge: Computationally costly operations with the kernel matrix.

- $\models \text{ linear solves } \mathbf{v} \mapsto \hat{\mathbf{K}}^{-1} \mathbf{v}$
- matrix traces log det $(\hat{K}) = \text{tr}(\log(\hat{K}))$ and $\text{tr}(\hat{K}^{-1} \frac{\partial \hat{K}}{\partial \theta_i})$

Linear solves and matrix traces can be computed solely via matrix-vector multiplication!

This is great because ...

- matrix-vector multiplies have complexity $\mathcal{O}(n^2)$.
- structured or sparse matrices are efficient to multiply with.
- the kernel matrix does not need to be stored in memory explicitly (Charlier et al., 2021).
- Computation Aware cash exploit parallelization, and modern hardware (GPUs).

lower time and space complexity

Preconditioning

How to encode and leverage structural prior knowledge about matrices.

Preconditioner

$$\hat{P} \approx \hat{K}$$

such that $\kappa(\hat{P}^{-1}\hat{K}) \ll \kappa(\hat{K})$ and \hat{P} is computationally tractable.

- Computing and storing \hat{P} is cheap.
- ► Linear solves $v \mapsto \hat{P}^{-1}v$ are efficient.
- Derived properties, such as the determinant or spectrum are known.

Asymptotic approx. error $g(\ell) \to 0$ of sequence of preconditioners $\hat{P}_{\ell} \to \hat{K}$:

 $\kappa(\hat{\boldsymbol{P}}_{\ell}^{-1}\hat{\boldsymbol{K}}) \leq (1 + \mathcal{O}(\boldsymbol{g}(\ell)) \|\hat{\boldsymbol{K}}\|_{\mathrm{F}})^2$

Known Use: Accelerate and stabilize linear solves via $CG \Rightarrow$ bias reduction

Stochastic Trace Estimation

Computing matrix traces tr $(f(\hat{K}))$ via matrix-vector multiplication.

Problems:

• Worst-case convergence in the number of random vectors is $\mathcal{O}(\ell^{-\frac{1}{2}})$

⇒ slows down training

Introduces stochasticity into hyperparameter optimization

Preconditioned Log-Determinant Estimation

Variance-reduced stochastic trace estimation via preconditioning.

Idea: Decompose log-determinant into deterministic and stochastic approximation.

$$\log \det(\hat{K}) = \log \det(\hat{P}_{\ell}\hat{P}_{\ell}^{-1}\hat{K}) = \underbrace{\log \det(\hat{P}_{\ell})}_{\text{known}} + \underbrace{\operatorname{tr}(\log(\hat{K}) - \log(\hat{P}_{\ell}))}_{\approx \operatorname{stochastic trace estimate}}$$

The better the preconditioner, the smaller the stochastic approximation \Rightarrow variance reduction

- Backward pass analogously via automatic differentiation.
- If we compute a preconditioner for CG, we can simply reuse it at negligible overhead.
- ► If $\hat{P}_{\ell} \rightarrow \hat{K}$ at rate $g(\ell)$, then the STE only requires $\mathcal{O}(\ell^{-\frac{1}{2}}g(\ell))$ random vectors.

Convergence Rates for Kernel – Preconditioner Combinations

Fhe faster the preconditioner converges to the kernel matrix (i.e. $g(\ell) o 0)$ the fewer random vectors are needed.

If $\hat{P}_{\ell} \to \hat{K}$ at rate $g(\ell)$, then the STE only requires $\mathcal{O}(\ell^{-\frac{1}{2}}g(\ell))$ random vectors.

Kernel	d	Preconditioner	$g(\ell)$	Condition
any	\mathbb{N}	none	1	
any	\mathbb{N}	truncated SVD	$\ell^{-\frac{1}{2}}$	
any	\mathbb{N}	random. SVD	$\ell^{-rac{1}{2}} + \mathcal{O}(\ell^{rac{1}{4}} \mathtt{S}^{-rac{1}{4}})$	w/ high prob. for <i>s</i> samples
any	\mathbb{N}	random. Nyström	$\ell^{-rac{1}{2}} + \mathcal{O}(\ell^{rac{1}{4}} \mathtt{S}^{-rac{1}{4}})$	w/ high prob. for <i>s</i> samples
any	\mathbb{N}	RFF	$\ell^{-rac{1}{2}}$	w/ high prob.
RBF	1	partial Cholesky	$\exp(-c\ell)$	for some $c > 0$
RBF	\mathbb{N}	QFF	$\exp(-b\ell^{\frac{1}{d}})$	for some $b>0$ if $\ell^{rac{1}{d}}>2\gamma^{-2}$
Matérn (ν)	\mathbb{N}	partial Cholesky	$\ell^{-(\frac{2\nu}{d}+1)}$	$2 u\in\mathbb{N}$, maximin ordering Schaefer2021a
$Matérn(\nu)$	1	QFF	$\ell^{-(s(\nu)+1)}$	where $s(u) \in \mathbb{N}$
mod. Matérn (ν)	\mathbb{N}	QFF	$\ell^{-\frac{s(\nu)+1}{d}}$	where $s(u) \in \mathbb{N}$
additive	\mathbb{N}	any	$dg(\ell)$	all summands have rate $g(\ell)$
any	\mathbb{N}	any kernel approx.	$g(\ell)$	∃ uniform convergence bound

Computation-Aware Gaussian Process Inference - Jonathan Wenger - July 19, 2023

Theoretical Guarantees

UNIVERSITAT

Probabilistic error bounds for the estimates of the log-marginal likelihood and its derivative.

Theorem (Log-marginal likelihood)

[...] Then with probability $1 - \delta$, the error in the estimate η of the log-marginal likelihood $\mathcal L$ satisfies

$$|\eta - \mathcal{L}| \le \varepsilon_{\text{CG}} + \frac{1}{2}(\varepsilon_{\text{Lanczos}} + \varepsilon_{\text{STE}}) ||\log(\hat{K})||_{\text{F}},$$

where the individual errors are bounded by

$$\varepsilon_{CG}(\kappa, i) \le K_3 \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^i$$
 (3)

$$\varepsilon_{\text{Lanczos}}(\kappa, i) \le K_1 \left(\frac{\sqrt{2\kappa+1}-1}{\sqrt{2\kappa+1}+1}\right)^{2i}$$
 (4)

$$\varepsilon_{\text{STE}}(\delta, \ell) \le C_1 \sqrt{\log(\delta^{-1})} \ell^{-\frac{1}{2}} g(\ell)$$
 (5)

Theorem (Derivative)

[...] Then with probability $1 - \delta$, the error in the estimate ϕ of the derivative of the log-marginal likelihood $\frac{\partial}{\partial \theta} \mathcal{L}$ satisfies

$$|\phi - \tfrac{\partial}{\partial \theta}\mathcal{L}| \leq \varepsilon_{\mathrm{CG}} + \tfrac{1}{2}(\varepsilon_{\mathrm{CG}'} + \varepsilon_{\mathrm{STE}}) \|\hat{K}^{-1} \tfrac{\partial \hat{K}}{\partial \theta}\|_{\mathrm{F}}$$

where the individual errors are bounded by

$$\varepsilon_{CG}(\kappa, i) \le K_4 \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^i$$
 (6)

$$\varepsilon_{\mathbb{CG}'}(\kappa,i) \le K_2 \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^i$$
 (7)

$$\varepsilon_{\text{STE}}(\delta,\ell) \le C_1 \sqrt{\log(\delta^{-1})} \ell^{-\frac{1}{2}} g(\ell)$$
(8)

We leverage preconditioning not only to reduce bias, but crucially also to reduce variance. Computation-Aware Gaussian Process Inference – Jonathan Wenger – July 19, 2023

Preconditioning Reduces Bias and Variance

Estimating the log-marginal likelihood and its derivatives <u>on synthetic data.</u>

Experiment Details:

Randomly sampled synthetic data (n = 10,000, d = 1)

Computation-AvRBFGkesnelpwittesnoiseascalerrathar=wellg0r=2July 19, 2023

Preconditioning Accelerates Hyperparameter Optimization

Gaussian process hyperparameter optimization on UCI data.

Experiment Details:

- UCI datasets (n = 12,449 to n = 326,155)
- Matérn $(\frac{3}{2})$ kernel with noise scale $\sigma^2 = 10^{-2}$
- Partial Cholesky preconditioner of size 500
- l = 50 random vectors

TUBINGE

References I

- Alireza Radmanesh, Matthew J. Muckley, Tullie Murrell, Emma Lindsey, Anuroop Sriram, Florian Knoll, Daniel K. Sodickson, and Yvonne W. Lui. "Exploring the Acceleration Limits of Deep Learning Variational Network-based Two-dimensional Brain MRI". In: *Radiology: Artificial Intelligence* 4.6 (2022). DOI: 10.1148/ryai.210313 (cit. on pp. 2–5).
- ► Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson. "GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration". In: Advances in Neural Information Processing Systems (NeurIPS) (2018) (cit. on pp. 18–20, 90).
- ▶ Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, and Ghislain Durif. "Kernel Operations on the GPU, with Autodiff, without Memory Overflows". In: *Journal of Machine Learning Research* 22.74 (2021), pp. 1–6 (cit. on pp. 18–20, 90).
- Philipp Hennig. "Probabilistic Interpretation of Linear Solvers". In: SIAM Journal on Optimization 25.1 (2015), pp. 234–260 (cit. on pp. 22–24).
- Jon Cockayne, Chris J. Oates, Ilse C.F. Ipsen, and Mark Girolami. "A Bayesian Conjugate Gradient Method (with Discussion)". In: *Bayesian Analysis* 14.3 (2019), pp. 937–1012. DOI: 10.1214/19-BA1145 (cit. on pp. 22–24).

References II

- ► Jonathan Wenger and Philipp Hennig. "Probabilistic Linear Solvers for Machine Learning". In: Advances in Neural Information Processing Systems (NeurIPS). 2020 (cit. on pp. 22–24).
- ► Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, and John P. Cunningham. "Posterior and Computational Uncertainty in Gaussian Processes". In: *Advances in Neural Information Processing Systems (NeurIPS)*. 2022 (cit. on pp. 25–28, 34–39, 49, 72).
- Michalis Titsias. "Variational learning of inducing variables in sparse Gaussian processes". In: International Conference on Artificial Intelligence and Statistics (AISTATS). 2009 (cit. on pp. 64–67).
- ► James Hensman, Nicolò Fusi, and Neil D Lawrence. "Gaussian processes for big data". In: Conference on Uncertainty in Artificial Intelligence (UAI). 2013 (cit. on pp. 64–67).
- Shashanka Ubaru, Jie Chen, and Yousef Saad. "Fast estimation of tr(f(A)) via stochastic Lanczos quadrature". In: SIAM Journal on Matrix Analysis and Applications 38.4 (2017), pp. 1075–1099 (cit. on pp. 90, 92).
- Michael F Hutchinson. "A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines". In: Communications in Statistics-Simulation and Computation 18.3 (1989), pp. 1059–1076 (cit. on p. 92).

- Gene H Golub and Gérard Meurant. Matrices, moments and quadrature with applications. Vol. 30. Princeton University Press, 2009 (cit. on p. 92).
- ► Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John P. Cunningham, and Jacob R. Gardner. "Preconditioning for Scalable Gaussian Process Hyperparameter Optimization". In: International Conference on Machine Learning (ICML). 2022 (cit. on p. 93).