
Computation-Aware Gaussian

Process Inference

Jonathan Wenger

Motivation
Accelerated MRI Reconstruction (Radmanesh et al., 2022)

Accurate Reconstruction

Uncertainty quantification is essential to make critical decisions.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 2

Motivation
Accelerated MRI Reconstruction (Radmanesh et al., 2022)

Accurate Reconstruction

Uncertainty quantification is essential to make critical decisions.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 2

Motivation
Accelerated MRI Reconstruction (Radmanesh et al., 2022)

Accurate Reconstruction Subsampled Reconstruction (100x)

Uncertainty quantification is essential to make critical decisions.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 2

Motivation
Accelerated MRI Reconstruction (Radmanesh et al., 2022)

Accurate Reconstruction Learned Reconstruction (100x)

Uncertainty quantification is essential to make critical decisions.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 2

Importance of Uncertainty Quantification
Crucial information to benefit from the 100x acceleration is missing!

Accurate Reconstruction Learned Reconstruction (100x)

Missing: UQ Overlay

Uncertainty quantification is essential to make critical decisions.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 2

Gaussian Process Regression
Supervised learning of an unknown function f : Rd → R with uncertainty quantification.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 3

Gaussian Process Regression
Learning an unknown function from data.

Goal: Supervised learning from n data points (X, y)

Prior: Gaussian process f ∼ GP(µ, k)

Likelihood: Observations y = f(X) + ε ∼ N
(
f(X), σ2I

)
Posterior: f | X, y ∼ GP(µ∗, k∗) with

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ(X))

k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

where K̂ = K + σ2I ∈ Rn×n.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 4

Computational Cost of Gaussian Processes
Uncertainty quantification can be expensive.

Time: O(n3) Space: O(n2)

100 101 102 103 104 105 106

Training Datapoints

1 ms

1 s
1 min

1 h
1 d

1 y

Ti
m

e

100 101 102 103 104 105 106

Training Datapoints

1 kB

1 MB

1 GB

1 TB

M
em

or
y

We need to approximate the posterior.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 5

Computational Cost of Gaussian Processes
Uncertainty quantification can be expensive.

Time: O(n3) Space: O(n2)

100 101 102 103 104 105 106

Training Datapoints

1 ms

1 s
1 min

1 h
1 d

1 y

Ti
m

e

100 101 102 103 104 105 106

Training Datapoints

1 kB

1 MB

1 GB

1 TB

M
em

or
y

We need to approximate the posterior.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 5

Approximate Gaussian Process Inference
Impact of approximations on uncertainty quantification and decision-making.

Mathematical Posterior CGGP

Nyström (SoR) SVGP

Latent Function Data Math. Posterior Posterior Mean Uncertainty

Approximations introduce error, which impacts downstream decisions.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 6

Approximate Gaussian Process Inference
Impact of approximations on uncertainty quantification and decision-making.

Mathematical Posterior CGGP

Nyström (SoR) SVGP

Latent Function Data Math. Posterior Posterior Mean Uncertainty

Approximations introduce error, which impacts downstream decisions.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 6

Fundamental Questions

Question 1:

How can we perform Gaussian process inference at scale?

Question 2:

How can we quantify the inevitable approximation error?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 7

Fundamental Questions

Question 1:

How can we perform Gaussian process inference at scale?

Question 2:

How can we quantify the inevitable approximation error?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 7

Q1: Gaussian Process Inference at Scale?
Efficiently approximating the posterior of a Gaussian process.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 8

Representer Weights
The posterior mean is a linear combination of kernel functions centered at datapoints.

f | X, y ∼ GP(µ∗, k∗)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))

representer weights v∗

= µ(·) +
n∑

j=1

k(·, xj)(v∗)j

GP Posterior Mean Data Kernel Function(s) × Representer Weight(s)

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 9

Interlude: Method of Conjugate Gradients
Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system Ax = b, where A
symmetric positive definite.

Idea: Rephrase as quadratic optimization problem and optimize. Let

f(x) =
1

2
xᵀAx − bᵀx

then ∇f(x) = 0 ⇐⇒ Ax = b ⇐⇒ r(x) := b− Ax = 0.

Question: How should we optimize?

1 Gradient descent: Follow di = r(xi) = −∇f(xi) s.t. 〈di, dj〉 = 0.

2 Conjugate direction method: Follow di s. t. 〈dᵀ
i
dj〉A = d

ᵀ
i
Adj = 0 for i 6= j.

=⇒ convergence in at most n steps.

3 Conjugate gradient method: First step d0 = r(x0).

x0

x

Oleg Alexandrov, commons.wikimedia.org/w/in-

dex.php?curid=2267598

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 10

Approximating Representer Weights
Iterative linear solvers can approximate the representer weights. (Gardner et al., 2018; Charlier et al., 2021)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))

representer weights v∗

≈ µ(·) + k(·, X)vi

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 11

Approximating Representer Weights
Iterative linear solvers can approximate the representer weights. (Gardner et al., 2018; Charlier et al., 2021)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))

representer weights v∗

≈ µ(·) + k(·, X)vi

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Benefit: Time complexity O(n2) and space complexity O(nd).

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 11

Approximating Representer Weights
Iterative linear solvers can approximate the representer weights. (Gardner et al., 2018; Charlier et al., 2021)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))

representer weights v∗

≈ µ(·) + k(·, X)vi

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Question: Can we quantify the impact of this approximation on the posterior?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 11

Q2: Can We Quantify Approximation Error?
Probabilistic error quantification at prediction time using probabilistic linear solvers.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 12

Probabilistic Linear Solvers for Machine Learning
Leveraging structure and quantifying approximation error. (Hennig, 2015; Cockayne et al., 2019; Wenger et al., 2020)

Problem: Solve linear system(s) Ax∗ = b for x∗ ∈ Rn.

(a) Gram matrix XᵀX (b) Kernel matrix K̂ = k(X, X) + σ2I (c) Hessian matrix ∇2`(y, f(X))

Linear systems in ML are large-scale, have model-induced structure and are often solved repeatedly.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 13

Probabilistic Linear Solvers
Interpreting solving linear systems numerically as statistical inference. (Hennig, 2015; Cockayne et al., 2019; Wenger et al., 2020)

Core Insights of Probabilistic Numerics

I The solution to any numerical problem is fundamentally uncertain.

I Numerical algorithms are learning agents, which actively collect data and make predictions.

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 14

Probabilistic Linear Solvers
Interpreting solving linear systems numerically as statistical inference. (Hennig, 2015; Cockayne et al., 2019; Wenger et al., 2020)

Core Insights of Probabilistic Numerics

I The solution to any numerical problem is fundamentally uncertain.

I Numerical algorithms are learning agents, which actively collect data and make predictions.

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 14

Learning Representer Weights
Estimating representer weights with a probabilistic linear solver. (Wenger et al., 2022a)

Goal: Solve K̂v∗ = y approximately.

Prior: v∗ ∼ N (v0,Σ0)

Likelihood: Observe representer weights via arbi-
trarily chosen actions si ∈ Rn:

αi := sᵀi ri−1 = sᵀi ((y − µ)− K̂vi−1))

= sᵀi K̂(v∗ − vi−1)

p(αi | v∗) = limε→0 N (αi; 0, ε)

Posterior: v∗ | αi ∼ N (vi,Σi), where

vi = vi−1 +Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂(v∗ − vi−1)

Σi = Σi−1 −Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂Σi−1

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 15

Learning Representer Weights
Estimating representer weights with a probabilistic linear solver. (Wenger et al., 2022a)

Goal: Solve K̂v∗ = y approximately.

Prior: v∗ ∼ N (v0,Σ0)

Likelihood: Observe representer weights via arbi-
trarily chosen actions si ∈ Rn:

αi := sᵀi ri−1 = sᵀi ((y − µ)− K̂vi−1))

= sᵀi K̂(v∗ − vi−1)

p(αi | v∗) = limε→0 N (αi; 0, ε)

Posterior: v∗ | αi ∼ N (vi,Σi), where

vi = vi−1 +Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂(v∗ − vi−1)

Σi = Σi−1 −Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂Σi−1

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 15

Learning Representer Weights
Estimating representer weights with a probabilistic linear solver. (Wenger et al., 2022a)

Goal: Solve K̂v∗ = y approximately.

Prior: v∗ ∼ N (v0,Σ0)

Likelihood: Observe representer weights via arbi-
trarily chosen actions si ∈ Rn:

αi := sᵀi ri−1 = sᵀi ((y − µ)− K̂vi−1))

= sᵀi K̂(v∗ − vi−1)

p(αi | v∗) = limε→0 N (αi; 0, ε)

Posterior: Affine Gaussian inference!

Posterior: v∗ | αi ∼ N (vi,Σi), where

vi = vi−1 +Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂(v∗ − vi−1)

Σi = Σi−1 −Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂Σi−1

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 15

Learning Representer Weights
Estimating representer weights with a probabilistic linear solver. (Wenger et al., 2022a)

Goal: Solve K̂v∗ = y approximately.

Prior: v∗ ∼ N (v0,Σ0)

Likelihood: Observe representer weights via arbi-
trarily chosen actions si ∈ Rn:

αi := sᵀi ri−1 = sᵀi ((y − µ)− K̂vi−1))

= sᵀi K̂(v∗ − vi−1)

p(αi | v∗) = limε→0 N (αi; 0, ε)

Posterior: v∗ | αi ∼ N (vi,Σi), where

vi = vi−1 +Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂(v∗ − vi−1)

Σi = Σi−1 −Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂Σi−1

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 15

Choosing the Linear Solver Prior
The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

Setting v0 = 0 and Σ0 = K̂−1, we have

vi = Si(S
ᵀ
i K̂Si)

−1Sᵀi (y − µ) = Ci(y − µ)

Σi = Σi−1 − Si(S
ᵀ
i K̂Si)

−1Sᵀi = Σ0 − Ci

where Si is the matrix of actions s1, . . . , si.

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 16

Choosing the Linear Solver Prior
The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

Remember: y = f(X) + ε, where ε ∼ N
(
0, σ2I

)
.

=⇒ y − µ ∼ N
(
0, k(X, X) + σ2I

)
= N

(
0, K̂

)

Setting v0 = 0 and Σ0 = K̂−1, we have

vi = Si(S
ᵀ
i K̂Si)

−1Sᵀi (y − µ) = Ci(y − µ)

Σi = Σi−1 − Si(S
ᵀ
i K̂Si)

−1Sᵀi = Σ0 − Ci

where Si is the matrix of actions s1, . . . , si.

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 16

Choosing the Linear Solver Prior
The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

Remember: y = f(X) + ε, where ε ∼ N
(
0, σ2I

)
.

=⇒ y − µ ∼ N
(
0, k(X, X) + σ2I

)
= N

(
0, K̂

)
=⇒ v∗ = K̂−1(y − µ) ∼ N

(
0

=v0

, K̂−1

=Σ0

)

Setting v0 = 0 and Σ0 = K̂−1, we have

vi = Si(S
ᵀ
i K̂Si)

−1Sᵀi (y − µ) = Ci(y − µ)

Σi = Σi−1 − Si(S
ᵀ
i K̂Si)

−1Sᵀi = Σ0 − Ci

where Si is the matrix of actions s1, . . . , si.

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 16

Choosing the Linear Solver Prior
The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

=⇒ y − µ ∼ N
(
0, k(X, X) + σ2I

)
= N

(
0, K̂

)
=⇒ v∗ = K̂−1(y − µ) ∼ N

(
0

=v0

, K̂−1

=Σ0

)
Setting v0 = 0 and Σ0 = K̂−1, we have

vi = Si(S
ᵀ
i K̂Si)

−1Sᵀi (y − µ) = Ci(y − µ)

Σi = Σi−1 − Si(S
ᵀ
i K̂Si)

−1Sᵀi = Σ0 − Ci

where Si is the matrix of actions s1, . . . , si.

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 16

Choosing the Linear Solver Prior
The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

=⇒ y − µ ∼ N
(
0, k(X, X) + σ2I

)
= N

(
0, K̂

)
=⇒ v∗ = K̂−1(y − µ) ∼ N

(
0

=v0

, K̂−1

=Σ0

)
Setting v0 = 0 and Σ0 = K̂−1, we have

vi = Si(S
ᵀ
i K̂Si)

−1Sᵀi (y − µ) = Ci(y − µ)

Σi = Σi−1 − Si(S
ᵀ
i K̂Si)

−1Sᵀi = Σ0 − Ci

where Si is the matrix of actions s1, . . . , si.

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 16

IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. (Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗), where

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂

−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X)K̂−1(y − µ)

2 Reparametrize posterior: (f | v∗)(·)
d
= f(·) + k(·, X)v∗

3 Marginalize representer weights belief: p(f(·)) =
∫
p(f(·) | v∗)p(v∗) dv∗ = GP(f;µi, ki),

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 17

IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. (Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗), where

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂

−1 − Ci

)

Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X)K̂−1(y − µ)

2 Reparametrize posterior: (f | v∗)(·)
d
= f(·) + k(·, X)v∗

3 Marginalize representer weights belief: p(f(·)) =
∫
p(f(·) | v∗)p(v∗) dv∗ = GP(f;µi, ki),

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 17

IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. (Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗), where

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂

−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X)K̂−1(y − µ)

2 Reparametrize posterior: (f | v∗)(·)
d
= f(·) + k(·, X)v∗

3 Marginalize representer weights belief: p(f(·)) =
∫
p(f(·) | v∗)p(v∗) dv∗ = GP(f;µi, ki),

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 17

IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. (Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗), where

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂

−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X)K̂−1(y − µ)

2 Reparametrize posterior: (f | v∗)(·)
d
= f(·) + k(·, X)v∗

3 Marginalize representer weights belief: p(f(·)) =
∫
p(f(·) | v∗)p(v∗) dv∗ = GP(f;µi, ki),

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 17

IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. (Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗), where

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂

−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X)K̂−1(y − µ)

2 Reparametrize posterior: (f | v∗)(·)
d
= f(·) + k(·, X)v∗

3 Marginalize representer weights belief: p(f(·)) =
∫
p(f(·) | v∗)p(v∗) dv∗ = GP(f;µi, ki),

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 17

IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. (Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗), where

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂

−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X)K̂−1(y − µ)

2 Reparametrize posterior: (f | v∗)(·)
d
= f(·) + k(·, X)v∗

3 Marginalize representer weights belief: p(f(·)) =
∫
p(f(·) | v∗)p(v∗) dv∗ = GP(f;µi, ki),

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 17

Probabilistic Quantification of Approximation Error
The covariance can be interpreted as a squared error.

Combined Uncertainty

Belief about the latent function is captured by f ∼ GP(µi, ki), s.t.

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Remember: k(x, x) = Cov(f(x), f(x)) = E
(
(f(x)− E(f(x)))2

)

k∗(x, x) = k(x, x)− k(x, X)K̂−1k(X, x)

mathematical uncertainty

= E
(
(f(x)− µ∗(x))

2
)

k
comp
i (x, x) = k(x, X)Σik(X, x)

computational uncertainty

=
Σi=Cov(v∗)=E((v∗−vi)(v∗−vi)ᵀ)

E
(
(µ∗(x)− µi(x))

2
)

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 18

Probabilistic Quantification of Approximation Error
The covariance can be interpreted as a squared error.

Combined Uncertainty

Belief about the latent function is captured by f ∼ GP(µi, ki), s.t.

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Remember: k(x, x) = Cov(f(x), f(x)) = E
(
(f(x)− E(f(x)))2

)
k∗(x, x) = k(x, x)− k(x, X)K̂−1k(X, x)

mathematical uncertainty

= E
(
(f(x)− µ∗(x))

2
)

k
comp
i (x, x) = k(x, X)Σik(X, x)

computational uncertainty

=
Σi=Cov(v∗)=E((v∗−vi)(v∗−vi)ᵀ)

E
(
(µ∗(x)− µi(x))

2
)

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 18

Probabilistic Quantification of Approximation Error
The covariance can be interpreted as a squared error.

Combined Uncertainty

Belief about the latent function is captured by f ∼ GP(µi, ki), s.t.

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty

Remember: k(x, x) = Cov(f(x), f(x)) = E
(
(f(x)− E(f(x)))2

)
k∗(x, x) = k(x, x)− k(x, X)K̂−1k(X, x)

mathematical uncertainty

= E
(
(f(x)− µ∗(x))

2
)

k
comp
i (x, x) = k(x, X)Σik(X, x)

computational uncertainty

=
Σi=Cov(v∗)=E((v∗−vi)(v∗−vi)ᵀ)

E
(
(µ∗(x)− µi(x))

2
)

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 18

Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 19

Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 19

Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 2

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 19

Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 3

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 19

Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.

IterGP-PI

i = 5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 19

Theoretical Analysis
Uncertainty as a bound on the relative predictive error.

Theorem (Relative Error Bound)

sup
g∈Hkσ :‖g‖Hkσ

≤1

g(x)− µg
∗(x)

error of math. post. mean

= sup
g∈Hkσ

|g(x)− µg
∗(x)|

‖g‖Hkσ

=
√

k∗(x, x) + σ2 (1)

i = 1 i = 3 i = 5

V
ar

ia
nc

e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty
Combined Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 20

Theoretical Analysis
The combined uncertainty is a tight worst case bound on the relative error to the latent function. (Wenger et al., 2022a)

Theorem (Relative Error Bound)

sup
g∈Hkσ :‖g‖Hkσ

≤1

error of approximate posterior mean +

g(x)− µg
∗(x)

error of math. post. mean

+ µg
∗(x)− µg

i (x)

computational error

=
√

ki(x, x) + σ2 (1)

i = 1 i = 3 i = 5

V
ar

ia
nc

e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty
Combined Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 20

What Have We Learned?

So Far:

I Gaussian process inference is prohibitive for large datasets.

I Iterative methods can reduce the necessary computations from O(n3) to O(n2).

I Using probabilistic numerics we can quantify the error when approximating Gaussian processes.

I Explicit trade-off between computation and uncertainty.

What About:

I How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?

I Is quadratic time O(n2) the limit? Can we approximate more cheaply?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 21

What Have We Learned?

So Far:

I Gaussian process inference is prohibitive for large datasets.

I Iterative methods can reduce the necessary computations from O(n3) to O(n2).

I Using probabilistic numerics we can quantify the error when approximating Gaussian processes.

I Explicit trade-off between computation and uncertainty.

What About:

I How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?

I Is quadratic time O(n2) the limit? Can we approximate more cheaply?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 21

What Have We Learned?

So Far:

I Gaussian process inference is prohibitive for large datasets.

I Iterative methods can reduce the necessary computations from O(n3) to O(n2).

I Using probabilistic numerics we can quantify the error when approximating Gaussian processes.

I Explicit trade-off between computation and uncertainty.

What About:

I How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?

I Is quadratic time O(n2) the limit? Can we approximate more cheaply?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 21

What Have We Learned?

So Far:

I Gaussian process inference is prohibitive for large datasets.

I Iterative methods can reduce the necessary computations from O(n3) to O(n2).

I Using probabilistic numerics we can quantify the error when approximating Gaussian processes.

I Explicit trade-off between computation and uncertainty.

What About:

I How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?

I Is quadratic time O(n2) the limit? Can we approximate more cheaply?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 21

What Have We Learned?

So Far:

I Gaussian process inference is prohibitive for large datasets.

I Iterative methods can reduce the necessary computations from O(n3) to O(n2).

I Using probabilistic numerics we can quantify the error when approximating Gaussian processes.

I Explicit trade-off between computation and uncertainty.

What About:

I How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?

I Is quadratic time O(n2) the limit? Can we approximate more cheaply?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 21

What Have We Learned?

So Far:

I Gaussian process inference is prohibitive for large datasets.

I Iterative methods can reduce the necessary computations from O(n3) to O(n2).

I Using probabilistic numerics we can quantify the error when approximating Gaussian processes.

I Explicit trade-off between computation and uncertainty.

What About:

I How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?

I Is quadratic time O(n2) the limit? Can we approximate more cheaply?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 21

Subset of Data versus IterGP-Cholesky
IterGP with unit vector actions recovers vanilla GP inference.

IterGP-Cholesky

i = 0

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 22

Subset of Data versus IterGP-Cholesky
IterGP with unit vector actions recovers vanilla GP inference.

IterGP-Cholesky

i = 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 22

Subset of Data versus IterGP-Cholesky
IterGP with unit vector actions recovers vanilla GP inference.

IterGP-Cholesky

i = 2

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 22

Subset of Data versus IterGP-Cholesky
IterGP with unit vector actions recovers vanilla GP inference.

IterGP-Cholesky

i = 3

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 22

Subset of Data versus IterGP-Cholesky
IterGP with unit vector actions recovers vanilla GP inference.

IterGP-Cholesky

i = 5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Va
ria

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 22

Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Method Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / subset of data
IterGP-EVD evi(K̂) (Partial) Eigenvalue decomposition

IterGP-CG sPCG
i or P̂−1ri (Preconditioned) CG

IterGP-PseudoInput k(X, zi) ≈ SVGP

Combined Uncertainty

IterGP-CG IterGP-Chol

=

Mathematical Uncertainty

+

Computational Uncertainty

IterGP-CG IterGP-Chol

IterGP-PI IterGP-PI

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 23

CGGP versus IterGP-CG
IterGP reduces the necessary computations for CG-based GP inference.

0.0 0.5 1.0

−2

0

2

CGGP

0.0 0.5 1.0

IterGP-CG

Latent function Training data Mathematical Posterior GP mean GP uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 24

CGGP versus IterGP-CG
IterGP reduces the necessary computations for CG-based GP inference.

1.125

1.150

1.175

1.200

N
L

L

Synthetic
(n = 1,024, d = 5)

5

10

15

Parkinson’s
(n = 5,287, d = 21)

2

4

6

Bike Sharing
(n = 15,641, d = 16)

0

10

20

Protein
(n = 41,157, d = 9)

CGGP
IterGP-CG

101 102

Iteration

0.66

0.68

0.70

0.72

R
M

SE

101 102

Iteration

5

10

101 102

Iteration

0.5

1.0

1.5

2.0

101 102

Iteration

2

4 CGGP
IterGP-CG

50 100

Iteration

0

50

100

150

200

250

300

350

400

#
M

at
ri

x-
ve

ct
or

pr
od

uc
ts

2×

Any Dataset

CGGP
IterGP-CG

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 24

SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).

0.0 0.5 1.0

−2

−1

0

1

2

SVGP-fixed

0.0 0.5 1.0

IterGP-PI

Latent function Training data Mathematical Posterior GP mean GP uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 25

SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).

1.10

1.15

1.20

N
L

L

Synthetic
(n = 1,024, d = 5)

2.0

2.5

3.0

3.5

Parkinson’s
(n = 5,287, d = 21)

0.75

1.00

1.25

Bike Sharing
(n = 15,641, d = 16)

0.9

1.0

Protein
(n = 41,157, d = 9)

−0.50

−0.25

0.00

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.70

0.75

R
M

SE

102 103

Ind. Points / Iteration

2

3

4

102 103

Ind. Points / Iteration

0.4

0.6

0.8

102 103

Ind. Points / Iteration

0.55

0.60

0.65

102 103

Ind. Points / Iteration

0.15

0.20

0.25 SVGP
IterGP-PI

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 25

SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).

1.10

1.15

1.20

N
L

L

Synthetic
(n = 1,024, d = 5)

2.0

2.5

3.0

3.5

Parkinson’s
(n = 5,287, d = 21)

0.75

1.00

1.25

Bike Sharing
(n = 15,641, d = 16)

0.9

1.0

Protein
(n = 41,157, d = 9)

−0.50

−0.25

0.00

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.70

0.75

R
M

SE

102 103

Ind. Points / Iteration

2

3

4

102 103

Ind. Points / Iteration

0.4

0.6

0.8

102 103

Ind. Points / Iteration

0.55

0.60

0.65

102 103

Ind. Points / Iteration

0.15

0.20

0.25 SVGP
IterGP-PI

What about optimizing inducing point locations?

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 25

SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).

1.10

1.15

1.20

N
L

L

Synthetic
(n = 1,024, d = 5)

2.0

2.5

3.0

3.5

Parkinson’s
(n = 5,287, d = 21)

0.75

1.00

1.25

Bike Sharing
(n = 15,641, d = 16)

0.9

1.0

Protein
(n = 41,157, d = 9)

−0.50

−0.25

0.00

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.70

0.75

R
M

SE

102 103

Ind. Points / Iteration

2

3

4

102 103

Ind. Points / Iteration

0.4

0.6

0.8

102 103

Ind. Points / Iteration

0.55

0.60

0.65

102 103

Ind. Points / Iteration

0.15

0.20

0.25 SVGP
IterGP-PI

What about computational cost? SVGP: O(nm2) versus IterGP-PI: O(n2m).

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 25

SVGP versus IterGP-MAR

: Large-Scale Problem

Linear-time computation-aware GP inference with IterGP. Unpublished work

Policy: Unit vector actions si = ej which select points greedily as j = arg max ri−1 =⇒ O(nm2).

0.0 0.5 1.0

−2

0

2

SVGP-opt

0.0 0.5 1.0

SparseIterGP-MAR

Latent function Training data Mathematical Posterior GP mean GP uncertainty

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 26

SVGP versus IterGP-MAR: Large-Scale Problem
Linear-time computation-aware GP inference with IterGP on a problem with n ≈ 105 datapoints. Unpublished work

Policy: Unit vector actions si = ej which select points greedily as j = arg max ri−1 =⇒ O(nm2).

0 ms 3 min 7 min 10 min 13 min 17 min
Time

−0.5

0.0

0.5

N
L

L

0 ms 3 min 7 min 10 min 13 min 17 min
Time

0.02

0.04

M
SE

SVGP SparseIterGP-MAR

Scalable GP approximation without inadvertently comprimising uncertainty quantification.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 26

SVGP versus IterGP-MAR: Large-Scale Problem
Linear-time computation-aware GP inference with IterGP on a problem with n ≈ 105 datapoints. Unpublished work

Policy: Unit vector actions si = ej which select points greedily as j = arg max ri−1 =⇒ O(nm2).

0 ms 3 min 7 min 10 min 13 min 17 min
Time

−0.5

0.0

0.5

N
L

L

0 ms 3 min 7 min 10 min 13 min 17 min
Time

0.02

0.04

M
SE

SVGP SparseIterGP-MAR

Scalable GP approximation without inadvertently comprimising uncertainty quantification.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 26

Bonus: Getting Philosophical
Blurring the lines between data and computation.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 27

Working with Infinite Data
For IterGP it does not matter how large the dataset is, or whether we have it stored on our machine. (Wenger et al., 2022a)

Theorem (Online GP Approximation with IterGP)

Let n, n′ ∈ N and consider training data sets X ∈ Rn×d, y ∈ Rn and
X′ ∈ Rn′×d, y′ ∈ Rn′ . Consider two sequences of actions

(si)
n
i=1 ∈ Rn and (s̃i)

n+n′

i=1 ∈ Rn+n′ such that

s̃i =

(
si
0

)
(2)

Then the posterior returned by IterGP for the dataset (X, y) using
actions si is identical to the posterior returned by IterGP for the
extended dataset using actions s̃i:

ITERGP(µ, k, X, y, (si)i) = ITERGP

(
µ, k,

(
X
X′

)
,

(
y
y′

)
, (s̃i)i

)
.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 28

Data is as Data Does
An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
Sᵀi f(X), σ

2Sᵀi Si

)
f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 29

Data is as Data Does
An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
Sᵀi f(X), σ

2Sᵀi Si

)
f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 29

Data is as Data Does
An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
Sᵀi f(X), σ

2Sᵀi Si

)
f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 29

Data is as Data Does
An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
Sᵀi f(X), σ

2Sᵀi Si

)
f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 29

Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30

Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30

Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30

Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30

Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30

Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30

Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30

Additional Material

Comparison of GP Approximations

Gaussian Process Classification

Large-scale Model Selection

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 31

Comparison of GP Approximations: Wasserstein-2 Distance
Comparison of different GP approximations at the training data, for interpolation and extrapolation.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 32

Comparison of GP Approximations: KL-Divergence
Comparison of different GP approximations at the training data, for interpolation and extrapolation.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 32

Gaussian Process Classification
Extension to non-Gaussian likelihoods via Laplace Approximation.

x1

x
2

True posterior mean i = 1 i = 10

C
ho

le
sk

y

i = 19

C
G

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 33

Gaussian Process Classification
Extension to non-Gaussian likelihoods via Laplace Approximation.

x1

x
2

True posterior variance i = 1 i = 10

C
ho

le
sk

y

i = 19

C
G

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 33

Model Selection for Gaussian Processes
We can identify kernel hyperparameters by optimizing the log-marginal likelihood.

θ∗ = arg max
θ

L(θ) = arg max
θ

log p(y | θ) = arg min
θ

(
(y − µ)ᵀK̂−1(y − µ)

quadratic loss

+ log det(K̂)

model complexity

)

Lengthscale θ

−L
(θ

)

Lengthscale θ

Q
ua

dr
at

ic
L

os
s

Lengthscale θ

C
om

pl
ex

ity

Overfitting Appropriate Fit Underfitting

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 34

Large-scale GP Hyperparameter Optimization
A numerical linear algebra bottleneck. (Ubaru et al., 2017; Gardner et al., 2018)

Need to: Evaluate log-marginal likelihood and its derivative repeatedly.
I log-marginal likelihood L(θ) = − 1

2

(
yᵀK̂−1y + log det(K̂) + n log(2π)

)
I derivative ∂

∂θL(θ) = 1
2 y

ᵀK̂−1 ∂K̂
∂θ K̂−1y − 1

2 tr(K̂−1 ∂K̂
∂θ)

Challenge: Computationally costly operations with the kernel matrix.
I linear solves v 7→ K̂−1v

I matrix traces log det(K̂) = tr(log(K̂)) and tr(K̂−1 ∂K̂
∂θi

)

K̂ =

n×n

Linear solves and matrix traces can be computed solely via matrix-vector multiplication!

This is great because …

I matrix-vector multiplies have complexity O(n2).

I structured or sparse matrices are efficient to multiply with.

I the kernel matrix does not need to be stored in memory explicitly

(Charlier et al., 2021).

I we can exploit parallelization and modern hardware (GPUs).

lower time and space complexity

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 35

Preconditioning
How to encode and leverage structural prior knowledge about matrices.

Preconditioner

P̂ ≈ K̂

such that κ(P̂−1K̂) � κ(K̂) and P̂ is computationally tractable.

I Computing and storing P̂ is cheap.

I Linear solves v 7→ P̂−1v are efficient.

I Derived properties, such as the determinant or spectrum are known.

Asymptotic approx. error g(`) → 0 of sequence of preconditioners P̂` → K̂ :

κ(P̂−1
` K̂) ≤ (1 +O(g(`))‖K̂‖F)2

Known Use: Accelerate and stabilize linear solves via CG ⇒ bias reduction

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 36

Stochastic Trace Estimation
Computing matrix traces tr(f(K̂)) via matrix-vector multiplication. (Hutchinson, 1989; Golub et al., 2009; Ubaru et al., 2017)

100 101 102 103 104

Number of random vectors `

lo
g
-d

et
er

m
in

a
n
t

log det(K̂) τSTE
` (log K̂) τSLQ

`,m (log K̂)

tr(f(K̂)) = nE[zᵀi f(K̂)zi]

≈ τ STE
` (f(K̂)) =

n

`

∑̀
i=1

zᵀi f(K̂)zi

≈ τ SLQ
`,m (f(K̂))

Problems:

I Worst-case convergence in the number of random vectors is O(`−
1
2)

I Introduces stochasticity into hyperparameter optimization
=⇒ slows down training

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 37

Preconditioned Log-Determinant Estimation
Variance-reduced stochastic trace estimation via preconditioning. (Wenger et al., 2022b)

Idea: Decompose log-determinant into deterministic and stochastic approximation.

log det(K̂) = log det(P̂`P̂
−1
` K̂) = log det(P̂`)︸ ︷︷ ︸

known

+ tr(log(K̂)− log(P̂`))︸ ︷︷ ︸
≈ stochastic trace estimate

The better the preconditioner, the smaller the stochastic approximation ⇒ variance reduction

100 101 102 103 104

Number of random vectors `

lo
g
-d

et
er

m
in

a
n
t

log det(K̂) τSLQ
`,m (log K̂) log det(P̂) + τSLQ

`,m (log P̂−1K̂)

I Backward pass analogously via

automatic differentiation.

I If we compute a preconditioner for

CG, we can simply reuse it at

negligible overhead.

I If P̂` → K̂ at rate g(`), then the STE

only requires O(`−
1
2 g(`)) random

vectors.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 38

Convergence Rates for Kernel – Preconditioner Combinations
The faster the preconditioner converges to the kernel matrix (i.e. g(`) → 0) the fewer random vectors are needed.

If P̂` → K̂ at rate g(`), then the STE only requires O(`−
1
2 g(`)) random vectors.

Kernel d Preconditioner g(`) Condition

any N none 1

any N truncated SVD `−
1
2

any N random. SVD `−
1
2 +O(`

1
4 s−

1
4) w/ high prob. for s samples

any N random. Nyström `−
1
2 +O(`

1
4 s−

1
4) w/ high prob. for s samples

any N RFF `−
1
2 w/ high prob.

RBF 1 partial Cholesky exp(−c`) for some c > 0

RBF N QFF exp(−b`
1
d) for some b > 0 if `

1
d > 2γ−2

Matérn(ν) N partial Cholesky `−(2ν
d

+1) 2ν ∈ N, maximin ordering Schaefer2021a

Matérn(ν) 1 QFF `−(s(ν)+1) where s(ν) ∈ N
mod. Matérn(ν) N QFF `−

s(ν)+1
d where s(ν) ∈ N

additive N any dg(`) all summands have rate g(`)
any N any kernel approx. g(`) ∃ uniform convergence bound

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 39

Theoretical Guarantees
Probabilistic error bounds for the estimates of the log-marginal likelihood and its derivative.

Theorem (Log-marginal likelihood)

[…] Then with probability 1− δ, the error in the

estimate η of the log-marginal likelihood L satisfies

|η − L| ≤ εCG + 1
2
(εLanczos + εSTE)‖log(K̂)‖F ,

where the individual errors are bounded by

εCG(κ, i) ≤ K3

(√
κ−1√
κ+1

)i

(3)

εLanczos(κ, i) ≤ K1

(√
2κ+1−1√
2κ+1+1

)2i

(4)

εSTE(δ, `) ≤ C1

√
log(δ−1)`−

1
2 g(`) (5)

Theorem (Derivative)

[…] Then with probability 1− δ, the error in the

estimate φ of the derivative of the log-marginal

likelihood ∂
∂θ

L satisfies

|φ− ∂
∂θ

L| ≤ εCG + 1
2
(εCG′ + εSTE)‖K̂−1 ∂K̂

∂θ
‖F

where the individual errors are bounded by

εCG(κ, i) ≤ K4

(√
κ−1√
κ+1

)i

(6)

εCG′(κ, i) ≤ K2

(√
κ−1√
κ+1

)i

(7)

εSTE(δ, `) ≤ C1

√
log(δ−1)`−

1
2 g(`) (8)

We leverage preconditioning not only to reduce bias, but crucially also to reduce variance.
Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 40

Preconditioning Reduces Bias and Variance
Estimating the log-marginal likelihood and its derivatives on synthetic data.

10−7
10−6
10−5
10−4

R
el

.E
rr

or

L

22 24 26

Samples `

10−11
10−9
10−7
10−5

V
ar

ia
nc

e

10−7

10−5

10−3

10−1

∂L/∂o

22 24 26

Samples `

10−11
10−9
10−7
10−5

∂L/∂l

22 24 26

Samples `

∂L/∂σ

Stoch. trace estimate Precond. trace estimate Hutchinson’s rate O(`−
1
2)

22 24 26

Samples `

Experiment Details:

I Randomly sampled synthetic data (n = 10,000, d = 1)

I RBF kernel with noise scale σ2 = 10−2

I Partial Cholesky preconditioner of size `

I ` random vectors

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 41

Preconditioning Accelerates Hyperparameter Optimization
Gaussian process hyperparameter optimization on UCI data.

0 5 10 15

Optimizer step

0.90

0.95

1.00

1.05

−L Precond. Qual.
0
200
500

(a) Training loss (Protein).

0 5 10 15

Optimizer step

20

40

60

80

#
ev

al
s

of
∂
L

Precond. Qual.
0
200
500

(b) Line search computations (Protein).

Elevators Bike
Kin40k

Protein
KEGGdir

3DRoad

smaller n ← Dataset → larger n

1×

2×

4×

8×

16×

Sp
ee

du
p

Standard
Precond.

(c) Speedup on UCI datasets.

Experiment Details:

I UCI datasets (n = 12,449 to n = 326,155)

I Matérn(3
2) kernel with noise scale σ2 = 10−2

I Partial Cholesky preconditioner of size 500

I ` = 50 random vectors

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 42

References I

I Alireza Radmanesh, Matthew J. Muckley, Tullie Murrell, Emma Lindsey, Anuroop Sriram,
Florian Knoll, Daniel K. Sodickson, and Yvonne W. Lui. “Exploring the Acceleration Limits of Deep
Learning Variational Network–based Two-dimensional Brain MRI”. In: Radiology: Artificial
Intelligence 4.6 (2022). DOI: 10.1148/ryai.210313 (cit. on pp. 2–5).

I Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.
“GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration”. In:
Advances in Neural Information Processing Systems (NeurIPS) (2018) (cit. on pp. 18–20, 90).

I Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, and Ghislain Durif.
“Kernel Operations on the GPU, with Autodiff, without Memory Overflows”. In: Journal of Machine
Learning Research 22.74 (2021), pp. 1–6 (cit. on pp. 18–20, 90).

I Philipp Hennig. “Probabilistic Interpretation of Linear Solvers”. In: SIAM Journal on Optimization
25.1 (2015), pp. 234–260 (cit. on pp. 22–24).

I Jon Cockayne, Chris J. Oates, Ilse C.F. Ipsen, and Mark Girolami. “A Bayesian Conjugate Gradient
Method (with Discussion)”. In: Bayesian Analysis 14.3 (2019), pp. 937–1012. DOI:
10.1214/19-BA1145 (cit. on pp. 22–24).

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 43

https://doi.org/10.1148/ryai.210313
https://doi.org/10.1214/19-BA1145

References II

I Jonathan Wenger and Philipp Hennig. “Probabilistic Linear Solvers for Machine Learning”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2020 (cit. on pp. 22–24).

I Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, and John P. Cunningham.
“Posterior and Computational Uncertainty in Gaussian Processes”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2022 (cit. on pp. 25–28, 34–39, 49, 72).

I Michalis Titsias. “Variational learning of inducing variables in sparse Gaussian processes”. In:
International Conference on Artificial Intelligence and Statistics (AISTATS). 2009 (cit. on pp. 64–67).

I James Hensman, Nicolò Fusi, and Neil D Lawrence. “Gaussian processes for big data”. In:
Conference on Uncertainty in Artificial Intelligence (UAI). 2013 (cit. on pp. 64–67).

I Shashanka Ubaru, Jie Chen, and Yousef Saad. “Fast estimation of tr(f(A)) via stochastic
Lanczos quadrature”. In: SIAM Journal on Matrix Analysis and Applications 38.4 (2017),
pp. 1075–1099 (cit. on pp. 90, 92).

I Michael F Hutchinson. “A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines”. In: Communications in Statistics-Simulation and Computation 18.3 (1989),
pp. 1059–1076 (cit. on p. 92).

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 44

References III

I Gene H Golub and Gérard Meurant. Matrices, moments and quadrature with applications. Vol. 30.
Princeton University Press, 2009 (cit. on p. 92).

I Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John P. Cunningham, and Jacob R. Gardner.
“Preconditioning for Scalable Gaussian Process Hyperparameter Optimization”. In: International
Conference on Machine Learning (ICML). 2022 (cit. on p. 93).

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 45

	Comparison of GP Approximations
	Gaussian Process Classification
	Large-scale Model Selection
	References

