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Motivation
Accelerated MRI Reconstruction (Radmanesh et al., 2022)

Accurate Reconstruction

Uncertainty quantification is essential to make critical decisions.
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Importance of Uncertainty Quantification
Crucial information to benefit from the 100x acceleration is missing!

Accurate Reconstruction Learned Reconstruction (100x)

Missing: UQ Overlay

Uncertainty quantification is essential to make critical decisions.
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Gaussian Process Regression
Supervised learning of an unknown function f : Rd → R with uncertainty quantification.
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Gaussian Process Regression
Learning an unknown function from data.

Goal: Supervised learning from n data points (X, y)

Prior: Gaussian process f ∼ GP(µ, k)

Likelihood: Observations y = f(X) + ε ∼ N
(
f(X), σ2I

)
Posterior: f | X, y ∼ GP(µ∗, k∗) with

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ(X))

k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

where K̂ = K + σ2I ∈ Rn×n.
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Computational Cost of Gaussian Processes
Uncertainty quantification can be expensive.

Time: O(n3) Space: O(n2)
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We need to approximate the posterior.
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Approximate Gaussian Process Inference
Impact of approximations on uncertainty quantification and decision-making.

Mathematical Posterior CGGP

Nyström (SoR) SVGP

Latent Function Data Math. Posterior Posterior Mean Uncertainty

Approximations introduce error, which impacts downstream decisions.
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Fundamental Questions

Question 1:

How can we perform Gaussian process inference at scale?

Question 2:

How can we quantify the inevitable approximation error?
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Q1: Gaussian Process Inference at Scale?
Efficiently approximating the posterior of a Gaussian process.
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Representer Weights
The posterior mean is a linear combination of kernel functions centered at datapoints.

f | X, y ∼ GP(µ∗, k∗)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))

representer weights v∗

= µ(·) +
n∑

j=1

k(·, xj)(v∗)j

GP Posterior Mean Data Kernel Function(s) × Representer Weight(s)
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Interlude: Method of Conjugate Gradients
Efficiently solving linear systems with positive definite system matrix via matrix-vector multiplies.

Goal: Approximately solve linear system Ax = b, where A
symmetric positive definite.

Idea: Rephrase as quadratic optimization problem and optimize. Let

f(x) =
1

2
xᵀAx − bᵀx

then ∇f(x) = 0 ⇐⇒ Ax = b ⇐⇒ r(x) := b− Ax = 0.

Question: How should we optimize?

1 Gradient descent: Follow di = r(xi) = −∇f(xi) s.t. 〈di, dj〉 = 0.

2 Conjugate direction method: Follow di s. t. 〈dᵀ
i
dj〉A = d

ᵀ
i
Adj = 0 for i 6= j.

=⇒ convergence in at most n steps.

3 Conjugate gradient method: First step d0 = r(x0).

x0

x

Oleg Alexandrov, commons.wikimedia.org/w/in-

dex.php?curid=2267598
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Approximating Representer Weights
Iterative linear solvers can approximate the representer weights. (Gardner et al., 2018; Charlier et al., 2021)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))

representer weights v∗

≈ µ(·) + k(·, X)vi

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)
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Iterative linear solvers can approximate the representer weights. (Gardner et al., 2018; Charlier et al., 2021)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))

representer weights v∗

≈ µ(·) + k(·, X)vi

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Benefit: Time complexity O(n2) and space complexity O(nd).
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Approximating Representer Weights
Iterative linear solvers can approximate the representer weights. (Gardner et al., 2018; Charlier et al., 2021)

µ∗(·) = µ(·) + k(·, X) K̂−1(y − µ(X))

representer weights v∗

≈ µ(·) + k(·, X)vi

Observation: Can use iterative linear solvers (e.g. CG) to approximate the representer weights v∗ ≈ vi.

Approx. GP Posterior Mean Data Kernel Function(s) × Approx. Representer Weight(s)

Question: Can we quantify the impact of this approximation on the posterior?
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Q2: Can We Quantify Approximation Error?
Probabilistic error quantification at prediction time using probabilistic linear solvers.
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Probabilistic Linear Solvers for Machine Learning
Leveraging structure and quantifying approximation error. (Hennig, 2015; Cockayne et al., 2019; Wenger et al., 2020)

Problem: Solve linear system(s) Ax∗ = b for x∗ ∈ Rn.

(a) Gram matrix XᵀX (b) Kernel matrix K̂ = k(X, X) + σ2I (c) Hessian matrix ∇2`(y, f(X))

Linear systems in ML are large-scale, have model-induced structure and are often solved repeatedly.
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Probabilistic Linear Solvers
Interpreting solving linear systems numerically as statistical inference. (Hennig, 2015; Cockayne et al., 2019; Wenger et al., 2020)

Core Insights of Probabilistic Numerics

I The solution to any numerical problem is fundamentally uncertain.

I Numerical algorithms are learning agents, which actively collect data and make predictions.

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)
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Learning Representer Weights
Estimating representer weights with a probabilistic linear solver. (Wenger et al., 2022a)

Goal: Solve K̂v∗ = y approximately.

Prior: v∗ ∼ N (v0,Σ0)

Likelihood: Observe representer weights via arbi-
trarily chosen actions si ∈ Rn:

αi := sᵀi ri−1 = sᵀi ((y − µ)− K̂vi−1))

= sᵀi K̂(v∗ − vi−1)

p(αi | v∗) = limε→0 N (αi; 0, ε)

Posterior: v∗ | αi ∼ N (vi,Σi), where

vi = vi−1 +Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂(v∗ − vi−1)

Σi = Σi−1 −Σi−1K̂si(s
ᵀ
i K̂Σi−1K̂si)

−1sᵀi K̂Σi−1

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *
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Estimating representer weights with a probabilistic linear solver. (Wenger et al., 2022a)
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Choosing the Linear Solver Prior
The Gaussian process prior makes assumptions about the representer weights.

Question: How to choose the linear solver prior?

Setting v0 = 0 and Σ0 = K̂−1, we have

vi = Si(S
ᵀ
i K̂Si)

−1Sᵀi (y − µ) = Ci(y − µ)

Σi = Σi−1 − Si(S
ᵀ
i K̂Si)

−1Sᵀi = Σ0 − Ci

where Si is the matrix of actions s1, . . . , si.

3 2 1 0 1 2 3

1

0

1

Approx. Representer Weights vi Representer Weights v *

Chicken & Egg Problem: How can we get a probabilistic error estimate for vi ≈ v∗, if we need K̂−1?
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IterGP: Computation-Aware Gaussian Process Inference
Quantifying uncertainty arising from observing finite data and performing a finite amount of computation. (Wenger et al., 2022a)

Goal: Approximate the Gaussian process posterior f | y ∼ GP(µ∗, k∗), where

µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂

−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X)K̂−1(y − µ)

2 Reparametrize posterior: (f | v∗)(·)
d
= f(·) + k(·, X)v∗

3 Marginalize representer weights belief: p(f(·)) =
∫
p(f(·) | v∗)p(v∗) dv∗ = GP(f;µi, ki),

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty
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µ∗(·) = µ(·) + k(·, X)K̂−1(y − µ), and k∗(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

Obtained: Belief about representer weights v∗ = K̂−1(y − µ) ∼ N (vi,Σi) = N
(
vi, K̂

−1 − Ci

)
Idea: Propagate uncertainty about representer weights to posterior.

1 Pathwise form of posterior: (f | y)(·) d
= f(·) + k(·, X)K̂−1(y − µ)

2 Reparametrize posterior: (f | v∗)(·)
d
= f(·) + k(·, X)v∗

3 Marginalize representer weights belief: p(f(·)) =
∫
p(f(·) | v∗)p(v∗) dv∗ = GP(f;µi, ki),

µi(·) = µ(·) + k(·, X)vi
ki(·, ·) = k(·, ·)− k(·, X)K̂−1k(X, ·)

mathematical uncertainty

+ k(·, X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·, X)Cik(X, ·)
combined uncertainty
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Computation-Aware GP Inference Illustrated
Interpreting computational and combined uncertainty as error quantification.
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Computation-Aware GP Inference Illustrated
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Theoretical Analysis
Uncertainty as a bound on the relative predictive error.

Theorem (Relative Error Bound)

sup
g∈Hkσ :‖g‖Hkσ

≤1

g(x)− µg
∗(x)

error of math. post. mean

= sup
g∈Hkσ

|g(x)− µg
∗(x)|

‖g‖Hkσ

=
√

k∗(x, x) + σ2 (1)
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Theoretical Analysis
The combined uncertainty is a tight worst case bound on the relative error to the latent function. (Wenger et al., 2022a)

Theorem (Relative Error Bound)
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What Have We Learned?

So Far:

I Gaussian process inference is prohibitive for large datasets.

I Iterative methods can reduce the necessary computations from O(n3) to O(n2).

I Using probabilistic numerics we can quantify the error when approximating Gaussian processes.

I Explicit trade-off between computation and uncertainty.

What About:

I How does IterGP relate to other numerical (approximation) methods, e.g. Cholesky, CGGP, SVGP?

I Is quadratic time O(n2) the limit? Can we approximate more cheaply?
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Subset of Data versus IterGP-Cholesky
IterGP with unit vector actions recovers vanilla GP inference.
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Subset of Data versus IterGP-Cholesky
IterGP with unit vector actions recovers vanilla GP inference.
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Policy Choice and Connection to Other Approximations
IterGP extends the most commonly used GP approximations to include computational uncertainty, with at most quadratic cost.

Method Actions si Classic Analog

IterGP-Cholesky ei (Partial) Cholesky / subset of data
IterGP-EVD evi(K̂) (Partial) Eigenvalue decomposition

IterGP-CG sPCG
i or P̂−1ri (Preconditioned) CG

IterGP-PseudoInput k(X, zi) ≈ SVGP

Combined Uncertainty

IterGP-CG IterGP-Chol

=

Mathematical Uncertainty

+

Computational Uncertainty

IterGP-CG IterGP-Chol

IterGP-PI IterGP-PI
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CGGP versus IterGP-CG
IterGP reduces the necessary computations for CG-based GP inference.
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CGGP versus IterGP-CG
IterGP reduces the necessary computations for CG-based GP inference.
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SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).
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What about optimizing inducing point locations?
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SVGP versus IterGP-PI
Quantifying computational uncertainty improves generalization of inducing point methods like SVGP (Titsias, 2009; Hensman et al., 2013).
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What about computational cost? SVGP: O(nm2) versus IterGP-PI: O(n2m).
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SVGP versus IterGP-MAR

: Large-Scale Problem

Linear-time computation-aware GP inference with IterGP. Unpublished work

Policy: Unit vector actions si = ej which select points greedily as j = arg max ri−1 =⇒ O(nm2).
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SVGP versus IterGP-MAR: Large-Scale Problem
Linear-time computation-aware GP inference with IterGP on a problem with n ≈ 105 datapoints. Unpublished work

Policy: Unit vector actions si = ej which select points greedily as j = arg max ri−1 =⇒ O(nm2).
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Scalable GP approximation without inadvertently comprimising uncertainty quantification.
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Bonus: Getting Philosophical
Blurring the lines between data and computation.
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Working with Infinite Data
For IterGP it does not matter how large the dataset is, or whether we have it stored on our machine. (Wenger et al., 2022a)

Theorem (Online GP Approximation with IterGP)

Let n, n′ ∈ N and consider training data sets X ∈ Rn×d, y ∈ Rn and
X′ ∈ Rn′×d, y′ ∈ Rn′ . Consider two sequences of actions

(si)
n
i=1 ∈ Rn and (s̃i)

n+n′

i=1 ∈ Rn+n′ such that

s̃i =

(
si
0

)
(2)

Then the posterior returned by IterGP for the dataset (X, y) using
actions si is identical to the posterior returned by IterGP for the
extended dataset using actions s̃i:

ITERGP(µ, k, X, y, (si)i) = ITERGP

(
µ, k,

(
X
X′

)
,

(
y
y′

)
, (s̃i)i

)
.
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Data is as Data Does
An alternative view of IterGP as a better model for the way we do inference instead of an approximation.

Observation: Only once we perform computation on data, does it enter our prediction.

→ →

The distinction between data and computation vanishes from this perspective.

What if we modelled this situation with a Gaussian process?

f ∼ GP(µ, k)

ỹ | f(X) ∼ N
(
Sᵀi f(X), σ

2Sᵀi Si

)
f | X, ỹ ∼ GP(µi, ki)

IterGP’s combined posterior is equivalent to exact GP regression for linearly projected data.
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ỹ | f(X) ∼ N
(
Sᵀi f(X), σ

2Sᵀi Si

)
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Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.
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I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30



Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30



Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30



Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30



Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30



Summary

Takeaways

I Large-scale models are often as much about the approximation as they are about the data.

I Uncertainty arises from limited data and from limited computation.

I For GPs, we can exactly quantify the approximation error given arbitrary resources =⇒ IterGP.

I Explicit trade-off between computation and uncertainty.

Open Questions

I Model selection / hyperparameter optimization?

I Policy design for downstream tasks and decision making problems.
I Active learning
I Bayesian optimization
I …

I Extension to non-Gaussian likelihoods.

Computation-Aware Gaussian Process Inference — Jonathan Wenger — July 19, 2023 30



Additional Material

Comparison of GP Approximations

Gaussian Process Classification

Large-scale Model Selection
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Comparison of GP Approximations: Wasserstein-2 Distance
Comparison of different GP approximations at the training data, for interpolation and extrapolation.
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Comparison of GP Approximations: KL-Divergence
Comparison of different GP approximations at the training data, for interpolation and extrapolation.
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Gaussian Process Classification
Extension to non-Gaussian likelihoods via Laplace Approximation.
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Gaussian Process Classification
Extension to non-Gaussian likelihoods via Laplace Approximation.
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Model Selection for Gaussian Processes
We can identify kernel hyperparameters by optimizing the log-marginal likelihood.

θ∗ = arg max
θ

L(θ) = arg max
θ

log p(y | θ) = arg min
θ

(
(y − µ)ᵀK̂−1(y − µ)

quadratic loss

+ log det(K̂)

model complexity

)

Lengthscale θ

−L
(θ

)

Lengthscale θ

Q
ua

dr
at

ic
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s

Lengthscale θ
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Overfitting Appropriate Fit Underfitting
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Large-scale GP Hyperparameter Optimization
A numerical linear algebra bottleneck. (Ubaru et al., 2017; Gardner et al., 2018)

Need to: Evaluate log-marginal likelihood and its derivative repeatedly.
I log-marginal likelihood L(θ) = − 1

2

(
yᵀK̂−1y + log det(K̂) + n log(2π)

)
I derivative ∂

∂θL(θ) = 1
2 y

ᵀK̂−1 ∂K̂
∂θ K̂−1y − 1

2 tr(K̂−1 ∂K̂
∂θ )

Challenge: Computationally costly operations with the kernel matrix.
I linear solves v 7→ K̂−1v

I matrix traces log det(K̂) = tr(log(K̂)) and tr(K̂−1 ∂K̂
∂θi

)

K̂ =

n×n

Linear solves and matrix traces can be computed solely via matrix-vector multiplication!

This is great because …

I matrix-vector multiplies have complexity O(n2).

I structured or sparse matrices are efficient to multiply with.

I the kernel matrix does not need to be stored in memory explicitly

(Charlier et al., 2021).

I we can exploit parallelization and modern hardware (GPUs).

lower time and space complexity
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Preconditioning
How to encode and leverage structural prior knowledge about matrices.

Preconditioner

P̂ ≈ K̂

such that κ(P̂−1K̂) � κ(K̂) and P̂ is computationally tractable.

I Computing and storing P̂ is cheap.

I Linear solves v 7→ P̂−1v are efficient.

I Derived properties, such as the determinant or spectrum are known.

Asymptotic approx. error g(`) → 0 of sequence of preconditioners P̂` → K̂ :

κ(P̂−1
` K̂) ≤ (1 +O(g(`))‖K̂‖F)2

Known Use: Accelerate and stabilize linear solves via CG ⇒ bias reduction
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Stochastic Trace Estimation
Computing matrix traces tr(f(K̂)) via matrix-vector multiplication. (Hutchinson, 1989; Golub et al., 2009; Ubaru et al., 2017)
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Number of random vectors `
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t

log det(K̂) τSTE
` (log K̂) τSLQ

`,m (log K̂)

tr(f(K̂)) = nE[zᵀi f(K̂)zi]

≈ τ STE
` (f(K̂)) =

n

`

∑̀
i=1

zᵀi f(K̂)zi

≈ τ SLQ
`,m (f(K̂))

Problems:

I Worst-case convergence in the number of random vectors is O(`−
1
2 )

I Introduces stochasticity into hyperparameter optimization
=⇒ slows down training
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Preconditioned Log-Determinant Estimation
Variance-reduced stochastic trace estimation via preconditioning. (Wenger et al., 2022b)

Idea: Decompose log-determinant into deterministic and stochastic approximation.

log det(K̂) = log det(P̂`P̂
−1
` K̂) = log det(P̂`)︸ ︷︷ ︸

known

+ tr(log(K̂)− log(P̂`))︸ ︷︷ ︸
≈ stochastic trace estimate

The better the preconditioner, the smaller the stochastic approximation ⇒ variance reduction
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Number of random vectors `
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g
-d

et
er

m
in

a
n
t

log det(K̂) τSLQ
`,m (log K̂) log det(P̂) + τSLQ

`,m (log P̂−1K̂)

I Backward pass analogously via

automatic differentiation.

I If we compute a preconditioner for

CG, we can simply reuse it at

negligible overhead.

I If P̂` → K̂ at rate g(`), then the STE

only requires O(`−
1
2 g(`)) random

vectors.
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Convergence Rates for Kernel – Preconditioner Combinations
The faster the preconditioner converges to the kernel matrix (i.e. g(`) → 0) the fewer random vectors are needed.

If P̂` → K̂ at rate g(`), then the STE only requires O(`−
1
2 g(`)) random vectors.

Kernel d Preconditioner g(`) Condition

any N none 1

any N truncated SVD `−
1
2

any N random. SVD `−
1
2 +O(`

1
4 s−

1
4 ) w/ high prob. for s samples

any N random. Nyström `−
1
2 +O(`

1
4 s−

1
4 ) w/ high prob. for s samples

any N RFF `−
1
2 w/ high prob.

RBF 1 partial Cholesky exp(−c`) for some c > 0

RBF N QFF exp(−b`
1
d ) for some b > 0 if `

1
d > 2γ−2

Matérn(ν) N partial Cholesky `−( 2ν
d

+1) 2ν ∈ N, maximin ordering Schaefer2021a

Matérn(ν) 1 QFF `−(s(ν)+1) where s(ν) ∈ N
mod. Matérn(ν) N QFF `−

s(ν)+1
d where s(ν) ∈ N

additive N any dg(`) all summands have rate g(`)
any N any kernel approx. g(`) ∃ uniform convergence bound
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Theoretical Guarantees
Probabilistic error bounds for the estimates of the log-marginal likelihood and its derivative.

Theorem (Log-marginal likelihood)

[…] Then with probability 1− δ, the error in the

estimate η of the log-marginal likelihood L satisfies

|η − L| ≤ εCG + 1
2
(εLanczos + εSTE)‖log(K̂)‖F ,

where the individual errors are bounded by

εCG(κ, i) ≤ K3

(√
κ−1√
κ+1

)i

(3)

εLanczos(κ, i) ≤ K1

(√
2κ+1−1√
2κ+1+1

)2i

(4)

εSTE(δ, `) ≤ C1

√
log(δ−1)`−

1
2 g(`) (5)

Theorem (Derivative)

[…] Then with probability 1− δ, the error in the

estimate φ of the derivative of the log-marginal

likelihood ∂
∂θ

L satisfies

|φ− ∂
∂θ

L| ≤ εCG + 1
2
(εCG′ + εSTE)‖K̂−1 ∂K̂

∂θ
‖F

where the individual errors are bounded by

εCG(κ, i) ≤ K4

(√
κ−1√
κ+1

)i

(6)

εCG′(κ, i) ≤ K2

(√
κ−1√
κ+1

)i

(7)

εSTE(δ, `) ≤ C1

√
log(δ−1)`−

1
2 g(`) (8)

We leverage preconditioning not only to reduce bias, but crucially also to reduce variance.
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Preconditioning Reduces Bias and Variance
Estimating the log-marginal likelihood and its derivatives on synthetic data.

10−7
10−6
10−5
10−4

R
el

.E
rr

or

L

22 24 26

Samples `

10−11
10−9
10−7
10−5

V
ar

ia
nc

e

10−7

10−5

10−3

10−1

∂L/∂o

22 24 26

Samples `

10−11
10−9
10−7
10−5

∂L/∂l

22 24 26

Samples `

∂L/∂σ

Stoch. trace estimate Precond. trace estimate Hutchinson’s rate O(`−
1
2 )

22 24 26

Samples `

Experiment Details:

I Randomly sampled synthetic data (n = 10,000, d = 1)

I RBF kernel with noise scale σ2 = 10−2

I Partial Cholesky preconditioner of size `

I ` random vectors
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Preconditioning Accelerates Hyperparameter Optimization
Gaussian process hyperparameter optimization on UCI data.
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(c) Speedup on UCI datasets.

Experiment Details:

I UCI datasets (n = 12,449 to n = 326,155)

I Matérn( 3
2 ) kernel with noise scale σ2 = 10−2

I Partial Cholesky preconditioner of size 500

I ` = 50 random vectors
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